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PHY 555: Solid-State Physics I
Homework #2

Due: 09/20/2024

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Explain why crystal momentum h̄k does not correspond to the true momentum of electrons
in a periodic potential, but is still a useful quantity.

2. 5 points Argue that the “overlapping band” situation shown in Fig. 1 is not possible for an electron
in a one-dimensional periodic potential. (Hint: What type of differential equation is the Schrödinger
equation in 1D? How many solutions does it have for a given energy? What do the band dispersions
we have analyzed look like with respect to ±k? ) What does this imply about the locations of band
extremea for 1D potentials?

Figure 1: Impossible bands in 1D periodic potential.

3. 5 points Why do all simple Bravais lattices (i.e., those without a basis) have to contain just one type
of element? Why can we have a composite lattice (i.e., with a basis) that also only contains one type
of element?

4. 5 points Consider the 2D CuO2 lattice depicted in Fig. 2(a) (filled circles are Cu and empty circles
are O) which is a common building block for high temperature superconductors.

(a) Draw a possible primitive unit cell, as well as the basis vectors. What is the Bravais lattice?

(b) In some cases, the O atoms may be distorted in and out of plane, as indicated by the “+” and
“−” in Fig. 2(b). Draw the in-plane primitive unit cell for this case.

Analytical

5. 15 points Show that for wavefunctions in Bloch form, i.e., ψk(x) = uk(x)eikx, the expectation value
of the kinetic energy operator can be written as
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Figure 2: Schematic of 2D CuO2 planes. (a) All atoms in plane, filled circles are Cu, empty are O. (b)
Displaced O atoms, “+” and “−.”

6. 30 points We discussed in class that the electronic structure is given by the Bloch wavefunctions
evaluated at k’s in the first Brillouin zone. At a given k, say k0, there are an infinite number of solu-
tions to the Schrödinger equation, labeled by n, at increasing energies Enk0 . Because the eigenfunc-
tion ψnk0 form a complete set we can actually use them to represent the wavefunction and energies
at any other k.

(a) Consider the expansion the crystal wavefunction in terms of Bloch functions of the form:

ψk(x) = ∑
n

cnk

[
ei(k−k0)xψnk0(x)

]
. (2)

Show that if we know the wavefunctions (ψnk0) and energies (Enk0) at k0, we can determine the
wavefunction and energies at any other k. Hint: It is sufficient to show that the matrix elements
of the Hamiltonian with respect to the basis functions in the square brackets in Eq. (2) can be
determined if ψnk0 and Enk0 are known.

(b) Consider a given energy state n and k-point k. Assume that this state is nondegenerate. Treat
h̄(k − k0)p/m as a perturbing potential and write the energy Enk up to second order in k − k0
using nondegenerate perturbation theory.

(c) Consider the case where k0 is a band extremum. Show that the energy versus k can be written
as a quadratic dispersion around k0, with an “effective mass” different from the free-electron
mass.

Computational

Figure 3: Brillouin zones and high-symmetry k points/paths for (a) simple (i.e., primitive) cubic, (b)
simple tetragonal, and (c) simple orthorhombic.
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7. 40 points . In this problem, we will explore the “band structure” of the 3D (simple) cubic tight-
binding model, which has a dispersion given by Ecubic(k) = E0 + 2γ[cos(kxa)+ cos(kya)+ cos(kza)].
We will also look at it’s generalization to tetragonal and orthorhombic. (Below, tables of high-
symmetry k-points and Brillouin zones are adapted from https://arxiv.org/pdf/1004.2974.pdf.)

(a) Consider the simple cubic Brillouin Zone depicted in Fig. 3(a). Plot the bandstructure, i.e.,
the band dispersion Ecubic(k) along the high-symmetry paths through the Brillouin Zone. Use
E0 = 0, γ = −0.5 Ha and a = 1 Bohr. See Table 1 for the high-symmetry k points in terms of
the reciprocal lattice vectors. Use the path: Γ → X → M → Γ → R → X. Note that, as you
can see from Fig. 3(a), the different segments of the path may be different lengths. To plot the
band structure correctly this should be taken into account, i.e., the range of the x axis between
high-symmetry points should be proportional to the distance between them in reciprocal space.

Hint: For some inspiration of how the bandstructure should be plotted, see e.g., Fig. 7 in the
Sec. V.4 of the textbook or Appendix B of https://arxiv.org/pdf/1004.2974.pdf. Of course
in those cases they have multiple bands where you will have only one (since you have one
orbital per site).

Table 1: High-symmetry k points of the simple cubic lattice
×g1 ×g2 ×g3

Γ 0 0 0
M 1/2 1/2 0
R 1/2 1/2 1/2
X 0 1/2 0

(b) We can generalize the tight-binding model to treat a tetragonal crystal (a = b ̸= c, α = β = γ =
90◦): Etet(k) = E0 + 2γ[cos(kxa) + cos(kya)] + 2γz cos(kzc). Plot the dispersion along the path:
Γ → X → M → Γ → Z → R → A → Z. The high-symmetry k points in terms of the reciprocal
lattice vectors are given in Table 2 and Fig. 3(b). Note that the same label may correspond to
a different point in the cubic and tetragonal cases (by convention). For the parameters, use
E0 = 0, γ = −0.5 Ha, γz = −0.2 Ha, a = 1 Bohr, and c = 1.5 Bohr.

Table 2: High-symmetry k points of the simple tetragonal lattice
×g1 ×g2 ×g3

Γ 0 0 0
M 1/2 1/2 0
A 1/2 1/2 1/2
R 0 1/2 1/2
X 0 1/2 0
Z 0 0 1/2

(c) We can further generalize to the case of an orthorhombic crystal (a ̸= b ̸= c, α = β = γ = 90◦):
Eorth(k) = E0 + 2γx cos(kxa) + 2γy cos(kyb) + 2γz cos(kzc). Plot the dispersion along the path
Γ → X → S → Y → Γ → Z → U → R → T → Z (see Table 3 and and Fig. 3(c)). For the
parameters, use E0 = 0, γx = −0.5 Ha, γy = −0.2 Ha, γz = −0.1 Ha, a = 1 Bohr, b = 1.5 Bohr,
and c = 2.0 Bohr.

(d) For the cubic, tetragonal, and orthorhombic cases (parts (a), (b), (c)), plot the effective mass in
the three Cartesian directions, given by

m∗
x =

(
1
h̄2

∂2E(k)
∂k2

x

)−1

, m∗
y =

(
1
h̄2
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y

)−1

, m∗
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(
1
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∂2E(k)
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y

)−1

. (3)
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Table 3: High-symmetry k points of the simple orthorhombic lattice
×g1 ×g2 ×g3

Γ 0 0 0
R 1/2 1/2 1/2
S 1/2 1/2 0
T 0 1/2 1/2
U 1/2 0 1/2
X 1/2 0 0
Y 0 1/2 0
Z 0 0 1/2

along the same paths through the BZ as in parts (a), (b), (c). Analytic expressions for the effec-
tive mass can be obtained from the expressions for E(k) given above. Note that the effective
mass will diverge at some k points, so you should zoom in around m∗ to observe the effective
mass around the band extrema. When does m∗ diverge? What happens to the effective masses
at the extrema when the symmetry is lowered from cubic to tetragonal to orthorhombic?
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