
PHY 555: Solid-state Physics I
Homework #6-7
Due: 12/09/2024

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Explain what the one-electron approximation is and how Hartree-Fock and density-functional
theory go beyond it.

2. 5 points Compare and contrast Hartree-Fock and density-functional theory in terms of the following
aspects:

(a) General philosophy for addressing the many-electron problem.

(b) The resulting single-electron problem to solve.

(c) The physical interpretation of the auxiliary single-particle orbitals and eigenvalues.

3. Explain the adiabatic Born-Oppenheimer approximation used in calculating lattice dynamics.

Analytical

4. 20 points Pretend that electrons are distinguishable particles, so that an appropriate many-electron
wavefunction is the product of spin orbitals: Ψ(r1σ1, ..., rNσN) = ∏N

i ψi(riσi). For this many-body
wavefunction ansatz, derive the single particle equations for ψ that minimize the many-body energy
(like we did in the Hartree-Fock approach).

5. 20 points Previously, we have discussed the free electron gas via the Sommerfeld model, which
assumed that the electrons were not interacting. We will now treat the same problem with Hartree-
Fock theory.

(a) In order for the system to be charge neutral, we include a uniform neutralizing positive back-
ground charge with the same density as the electrons (referred to as the “Jellium model”).
Show that in this model the direct Coulomb interaction and external potential (i.e., the inter-
action fo the electrons with the positive background, neglect the interaction with the positive
background and itself) cancel so that the Fock operator only includes the kinetic energy and
exchange.

(b) Show that plane waves are eigenstates of the Fock operator. To simplify the eigenvectors, use
the fact that the Fourier transform of e2/|r − r′|

(c) What is the ground-state energy of the free electron gas in Hartree-Fock theory as a function of
rs?
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6. 20 points We have discussed plane waves and atomic orbitals for performing calculations of the
electronic structure of solids and materials. In addition, gaussians are another common basis set, and
useful for other calculations in solids. The benefit of gaussians as a basis set is that they are localized
functions, so do not require pseudopotentials like plane waves, and integrals are easier to calculate
than atomic orbitals. For example, one of the useful property about gaussians is the gaussian product
theorem (GPT) that states that the product of two gaussians is also a gaussian, centered at the “center
of gravity” of the two original gaussians. I.e., for χa(r) = e−α(r−A)2

and χb(r) = e−β(r−B)2
,

χa(r)χb(r) = e−
αβ

α+β (A−B)2
e−(α+β)(r−P)2

(1)

where P = (αA+ βB)/(α+ β). We will use this and other properties of Gaussians in the next several
problems.

7. 20 points Consider a basis set of gaussians of the form ϕi(r) = Aieαi |r−Ri |2 .

(a) Using the GPT [Eq. (1)], show that we can calculate the overlap between gaussians, i.e., Sij =∫
ϕi(r)ϕj(r)dr with the simple relation

Sij = Ai Aje
−

αiαj
αi+αj

(Ri−Rj)
2
(

π

αi + αj

)3/2

(2)

Note that we neglect the complex conjugation since all gaussians considered here will be real.

(b) In general Coulomb matrix elements, for Vext and the two electron integrals, are tricky to cal-
culate. This is because we need to be careful integrating over divergences of the form 1/|r− r′|
when r = r′. With gaussians, there is an elegant way to evaluate these matrix elements, utiliz-
ing the integral transformation

1
|r − rC|

=
∫ ∞

−∞
e−|r−rC |2t2

dt (3)

Consider a gaussian charge density ρi(r) = (αi/π)3/2 exp(−αi|r − Ri|), which could corre-
spond to a basis function, or product of basis functions (both are gaussians!). Show using the
result of (a) that ρi(r) is normalized to unity. Then, using Eq. (3) and Eq. (1), show that the
electrostatic potential at point RC, i.e.,

Vi(RC) =
∫

ρi(r)
|r − RC|

dr (4)

can be written as

Vi(RC) =
1

|Ri − RC|
erf

(√
αi|Ri − RC|2

)
, (5)

where erf is the error function and we use atomic units throughout so me = e = h̄ = 1.

(c) Using the result of (b) and Eq. (1), show that an arbitrary Coulomb matrix element between
gaussians

Uijkl =
∫ ∫ ϕi(r1)ϕj(r1)ϕk(r2)ϕl(r2)

|r1 − r2|
dr1dr2 (6)

can be written as

Uijkl =
SijSkl

|Ri − RC|
erf

(√
αi|Ri − RC|2

)
(7)

8. 20 points An important contribution to the energy of ionic materials is the sum of electrostatic in-
teractions between oppositely charged ions
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Computational

9. In this problem, we consider a simple diatomic molecule made up of a hydrogen atom and a
helium atom (H-He) with two electrons. We set the location of H at RH = (0, 0, 0) and He is
RHe = (1.5117, 0, 0) Ha. We use a basis set made up of two Gaussians:

ϕ1(r) = 0.3696e−0.4166|r−RH|2 (8)

ϕ2(r) = 0.5881e−0.7739|r−RHe|2 (9)

We will neglect spin for now, and will use atomic units throughout so me = e = h̄ = 1.

(a) Calculate the kinetic energy matrix elements with the basis functions:

Tij =
∫

ϕi(r)
(
−1

2
∇2

)
ϕj(r)dr. (10)

(b) Use your results from problem 6 to calculate the matrix elements of the external potential

Vij = −
∫

ϕi(r)
ZH

|r − RH|
ϕj(r)dr −

∫
ϕi(r)

ZHe

|r − RHe|
ϕj(r)dr. (11)

(c) Use your results from problem 6 to calculate the Coulomb and exchange matrix elements

Uijkl =
∫ ∫ ϕi(r1)ϕj(r1)ϕk(r2)ϕl(r2)

|r1 − r2|
dr1dr2. (12)

(d) Calculate the nuclear-nuclear repulsion energy:

10. Now we have all of the information to solve for the energy of the molecule using Hartree-Fock (HF).
directly solving the HF equation is challenging, especially because of the exchange term, which
makes it an integro-differential equation. For “closed shell” systems where we can neglect the spin
part (as we do here), we can actually express the equation in a form much easier to solve:

FC = SCϵϵϵ. (13)

In this equation, S is the overlap matrix between basis functions discussed in problem 6(a); C is
the matrix of expansion coefficients for the basis elements, i.e., the wavefunctions solving the HF
equations will be given by is given by ψj = ∑i Cijϕi; and F is the Fock matrix with elements

Fij = Tij + Vij + ∑
kl

Pkl(Uijkl −
1
2

Uilkj), (14)

where Pkl are the elements of the “charge density matrix.” They are related to the expansion coeffi-
cient via Pkl = 2 ∑N/2

i CkiC∗
li where N is the number of electrons in the system (in our case there will

be two). It is called the charge-density matrix because the total charge density of the system can be
written as ρ(r) = ∑ij Pijϕi(r)ϕ∗

i (r). Perform the following steps to solve for the energy of the H-He
molecule using Hartree-Fock:
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