PHY 555 Solid State Physics or Condensed Matter Physics

Marvin L. Cohen and Steven G. Louie Fundamentals of CONDENSED MATTER PHYSICS

Contents

Preface			page xi			
		Part I Basic concepts: electrons and phonons				
1	Conc	3				
	1.1	1 Classification of solids				
	1.2	A first model of a solid: interacting atoms	4			
	1.3	A second model: elementary excitations	6			
	1.4	Elementary excitations associated with solids and liquids	7			
	1.5	External probes	8			
	1.6	Dispersion curves	9			
	1.7	Graphical representation of elementary excitations				
		and probe particles	13			
	1.8	Interactions among particles	13			
2	Elect	20				
	2.1	General Hamiltonian	20			
	2.2	The Born-Oppenheimer adiabatic approximation	21			
	2.3	The Hartree mean-field approximation	22			
	2.4	The periodic potential approximation	22			
	2.5	Translational symmetry, periodicity, and lattices	23			
3	Elect	31				
	3.1	Free electron model	31			
	3.2	Symmetries and energy bands	33			
	3.3	Nearly-free electron model	39			
	3.4	Tight-binding model	43			
	3.5	Electron (or hole) velocity in a band and the f-sum rule	48			
	3.6	Periodic boundary conditions and summing over band states	52			
	3.7	Energy bands for materials	55			
4	Latti	63				
	4.1	Lattice vibrations	63			
	4.2	Second quantization and phonons	70			
	4.3	Response functions: heat capacity	77			

Contents

	4.4	Density of states	78
	4.5	Critical points and van Hove singularities	83
Pa	rt I Pr	oblems	89
		Part II Electron Interactions, Dynamics, and Responses	
5	Elect	tron dynamics in crystals	101
	5.1	Effective Hamiltonian and Wannier functions	101
	5.2	Electron dynamics in the effective Hamiltonian approach	103
	5.3	Shallow impurity states in semiconductors	107
	5.4	Motion in external fields	108
	5.5	Effective mass tensor	113
	5.6	Equations of motion, Berry phase, and Berry curvature	114
6	Man	y-electron interactions: the interacting electron gas and beyond	119
	6.1	The interacting electron gas or jellium model	121
	6.2	Hartree-Fock treatment of the interacting electron gas	123
	6.3	Ground-state energy: Hartree-Fock and beyond	126
	6.4	Electron density and pair-correlation functions	130
	6.5	$g(\mathbf{r}, \mathbf{r}')$ of the interacting electron gas	132
	6.6	The exchange-correlation hole	135
	6.7	The exchange-correlation energy	136
7	Density functional theory		140
	7.1	The ground state and density functional formalism	141
	7.2	The Kohn-Sham equations	143
	7.3	Ab initio pseudopotentials and density functional theory	149
	7.4	Some applications of DFT to electronic, structural, vibrational,	
		and related ground-state properties	151
8	The dielectric function for solids		
	8.1	Linear response theory	158
	8.2	Self-consistent field framework	162
	8.3	The RPA dielectric function within DFT	163
	8.4	The electron gas	165
	8.5	Some simple applications	168
	8.6	Some other properties of the dielectric function	172
Pa	rt II Pi	roblems	177

k.

Part III Optical and transport phenomena

9	Electronic transitions and optical properties of solids				
	9.1 Response functions	185			
	9.2 The Drude model for metals	189			
	9.3 The transverse dielectric function	192			
	9.4 Interband optical transitions in semiconductors and insulators	196			
	9.5 Electron-hole interaction and exciton effects	201			
10	Electron-phonon interactions				
	10.1 The rigid-ion model	218			
	10.2 Electron-phonon matrix elements for metals, insulators,				
	and semiconductors	222			
	10.3 Polarons	227			
11	Dynamics of crystal electrons in a magnetic field				
	11.1 Free electrons in a uniform magnetic field and Landau levels	232			
	11.2 Crystal electrons in a static B-field	234			
	11.3 Effective mass and real-space orbits	236			
	11.4 Quantum oscillations: periodicity in 1/B and the de Haas-van				
	Alphen effect in metals	238			
12	Fundamentals of transport phenomena in solids				
	12.1 Elementary treatment of magnetoresistance and the Hall effect	245			
	12.2 The integer quantum Hall effect	253			
	12.3 The Boltzmann equation formalism and transport in real materials	260			
	12.4 Electrical and thermal transport with the linearized Boltzmann equation	ion 267			
Part III Problems					
	Part IV Superconductivity, magnetism, and lower-dimensional system	ms			
13	Using many-body techniques	283			
	13.1 General formalism	283			
	13.2 Interacting Green's functions	287			
	13.3 Feynman diagrams and many-body perturbation theory techniques	294			
14	Superconductivity				
	14.1 Brief discussion of the experimental background	301			
		200			
	14.2 Theories of superconductivity	300			
	14.2 Theories of superconductivity14.3 Superconducting quasiparticle tunneling	306			
	14.2 Theories of superconductivity14.3 Superconducting quasiparticle tunneling14.4 Spectroscopies of superconductors	306 344 350			
	14.2 Theories of superconductivity14.3 Superconducting quasiparticle tunneling14.4 Spectroscopies of superconductors14.5 More general solutions of the BCS gap equation	306 344 350 353			

15 Magnetism

- 15.1 Background
- 15.2 Diamagnetism
- 15.3 Paramagnetism
- 15.4 Ferromagnetism and a
- 15.5 Magnetism in metals
- 15.6 Magnetic impurities an

16 Reduced dimensional systems a

- 16.1 Density of states and
- 16.2 Ballistic transport and
- 16.3 The Landauer formula
- 16.4 Weak coupling and the
- 16.5 Graphene, carbon nano
- 16.6 Other quasi-2D materi

Part IV Problems

References Index

	365
	365
	365
	367
antiferromagnetism	370
	379
and local correlation effects	382
and nanostructures	386
optical properties	386
quantization of conductance	392
a	397
e Coulomb blockade	399
otubes, and graphene nanostructures	402
ials	414
	416
	427
	433

Course Grading

in line with homeworks. Each exam will be only 25% of the course. Homework will be another 50% of the course. At the end of the semester there will also be a journal club style available. This will be graded as a homework.

Assignments : 50% Every second week (7 assignments, Brightspace) Midterm I : 25% Date TBD

- There will be one midterm and a final exam. Midterm will be a short (1.5 h long) exam. The final exam will cover everything. Exams will be very much
- presentation on a paper chosen by you, from a list of papers I will make
- Final: 25% (can replace grade of MT1 or MT2 whichever is lower).

Result of interactions between $\sim 10^{23}$ atoms yield a geometric structure that maintains its shape.

> How can we understand the properties of a solid in terms of its atomic composition and geometric structure?

Structure + Composition

What is a solid?

•Structural properties (mechanical properties, crystal

structure, surfaces...)

•Electrical properties (resistivity, conductivity, I/V characteristics, Hall effect)

•Thermal properties (specific heat, thermal conductivity)

•Optical properties (color, response to EM fields)

Bonding properties of solids: How much of the individual atom is kept?

Metallic

MarvinCohen_Fig.1.1

Molecular

Solid	
Insulator	(
Semiconductor	
Metal	
Superconductor	

Well, we can use a theory of everything, we know the equation for it!

Just considering electrical properties there is a huge variation

$$H = \sum_{\alpha} \frac{p_{\alpha}^2}{2M_{\alpha}} + \sum_{i} \frac{p_i^2}{2m} + \frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta} e^2}{|R_{\alpha} - R_{\beta}|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|r_i - r_j|} - \sum_{i\alpha} \frac{Z_{\alpha} e^2}{|R_{\alpha} - r_i|}$$

Ground-state energy (without E_{ionic}

- $\psi_0 = \psi_0[r_1\sigma_1, ..., r_N\sigma_N]$ antisymmetric

•
$$n(r) = \rho(r) = \langle \psi_0 | \sum_i \delta(r - r)$$

•
$$\rho_2(r,r') = \langle \psi_0 | \sum_{i \neq j} \delta(r-r_i)$$

Problem: We don't know ψ_0 ! We could use variational principle. However with $\psi = \psi[r_1\sigma_1, ..., r_N\sigma_N]$, calculating $\langle \psi | H | \psi \rangle$ would require $(ngrid)^{3N} \sim 10^{30}$ operations (for small molecule). With 10^{12} flops machine \implies centuries. **↑**

Note 2018: tera, peta, exa... 10¹⁸... still years for realistic systems.

c):
$$E_0 = \langle \psi_0 | H | \psi_0 \rangle$$
 with:

• $|\psi_0[r_1\sigma_1, ..., r_N\sigma_N)|^2 dr_1 ... dr_N$ probability of finding electron i in $[\mathbf{r}_i, \mathbf{r}_i + d\mathbf{r}_i]$.

 $\psi_i = \psi_0$ charge density

 $\delta(r' - r_i)|\psi_0 > \text{density of pairs, etc.}$

"The general theory of quantum mechanics is now almost complete. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

Dirac, 1929

Elementary excitation model

Description of solids in the elementary excitation model: Excitations can emerge when the system is not in the ground state. We need to know the energy spectrum and the density of states (i.e statistics of the system, fermions or bosons)

Interaction among different excitations: How they appear, disappear and interact with external probes

Quasiparticles (usually fermions) not too different from the excited states of the particles they arise from

Collective excitations (usually bosons): very different from the underlying particles excitations.

Generalized harmonic oscillators (2nd Quantization)

MarvinCohen_Fig.1.2

Quasiparticles

- Quasielectrons: or electrons. Particles that behave like non-interacting electrons in low lying excited states. Fermions. Ex. Electrons in solids (mass renormalization of free electron). Typical excitation energies are of the order of coulomb energy of 2 e on a lattice of lattice parameter a ($e^2/a \sim 5 eV$). typical v $\sim (e^2/am)^{1/2} \sim 10^8 cm/s$
- Hole: opposite charge of a quasilectron
- **Phonon**: Collective excitation of the lattice (boson). wave vector q, polarization mode and energy h ω . Energies of order of K_bT_D (Td room T, 300K, so energies of order of meV)
- **Plasmon**: Collective excitation (boson) of the electrons (charge density fluctuation) Wave vector q and energy of order of classical plasma energy: $h\omega_p \sim 10 \text{ eV}$ for metals but can be much smaller if electron density n is small ($h\omega_p = h(4\pi ne^2 / m)^{(1/2)}$
- Magnon: Collective excitation of spins (spin waves). Energies of ~0.0001 eV, but can be as high as 0.1 eV)
- **Polaron**: Type of quasilectron Electron+lattice deformation. Very heavy electron. Can be though as a phonon dressed electron. Binding energies ~ 10-100 meV
- Exciton: Bound state of a quasilectron and a hole. Binding energies of 0.025 eV. Typical in semiconductors and insulators.
- Superconducting quasiparticle: Fermions, electronic excited states of a superconductor (cooper particles or Bogoliubons). Linear combination of electrons and holes. Energies ~ Tc ~ 10⁻⁵⁻10⁻² eV

MarvinCohen_Fig.1.5

Dispersion curves

MarvinCohen_Fig.1.3

MarvinCohen_Fig.1.4

Interactions among quasiparticles: quasiparticle-boson

Electron-photon

Electron-phonon

Electron-plasmon

MarvinCohen_Fig.1.7

Interactions among quasiparticles: quasiparticle-boson

MarvinCohen_Fig.1.6

Electron (k) emits a photon (-q) scattering into k+q

Electron (k) absorbs a photon (q) scattering into k+q

Hole (-k-q) emits a photon (-q) scattering into -k

Hole (-k-q) absorbs a photon (q) scattering into -k

photon (q) creates an electron k+q and hole -k

```
electron (k+q) and hole (-k) recombine or annihilate into photon (q)
```

Interactions among quasiparticles: quasiparticlequasiparticle interactions

MarvinCohen_Fig.1.8

Electron self energy (k) emits and absorbs a phonon (q)

Electron self energy (k) emits and absorbs a plasmon (q)

Electron-electron Coulomb interaction or photon exchange

Electron-electron interaction via phonon exchange

Electron-hole Coulomb interaction

Interactions among quasiparticles: collective excitation interactions

MarvinCohen_Fig.1.9

phonon-phonon scattering

phonon self energy caused by electron-hole creation and destruction.

Interactions among quasiparticles: collective excitation interactions

Couple modes from bare collective excitations

MarvinCohen_Fig.1.10

eq. for the solid:

Separate the ionic problem for the electronic problem

$$\begin{split} H &= \sum_{\alpha} \frac{p_{\alpha}^2}{2M_{\alpha}} + \sum_{i} \frac{p_i^2}{2m} + 1/2 \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta} e^2}{|R_{\alpha} - R_{\beta}|} + 1/2 \sum_{i \neq j} \frac{e^2}{|r_i - r_j|} - \sum_{i\alpha} \frac{Z_{\alpha} e^2}{|R_{\alpha} - r_i|} \\ H &= H_e + H_{ion} \\ H_{ion} &= \sum_{\alpha} \frac{p_{\alpha}^2}{2M_{\alpha}} + \frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta} e^2}{|R_{\alpha} - R_{\beta}|} \\ H_e &= \sum_{i} \frac{p_i^2}{2m} + \frac{1}{2} \sum_{i \neq i} \frac{e^2}{|r_i - r_j|} - \sum_{\alpha i} \frac{Z_{\alpha} e^2}{|r_i - R_{\alpha}|} \end{split}$$

$$\begin{split} \sum_{i} \frac{p_{i}^{2}}{2m} + \frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta} e^{2}}{|R_{\alpha} - R_{\beta}|} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|r_{i} - r_{j}|} - \sum_{i\alpha} \frac{Z_{\alpha} e^{2}}{|R_{\alpha} - r_{i}|} \\ H &= H_{e} + H_{ion} \\ H_{ion} &= \sum_{\alpha} \frac{p_{\alpha}^{2}}{2M_{\alpha}} + \frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta} e^{2}}{|R_{\alpha} - R_{\beta}|} \\ \frac{p_{i}^{2}}{2m} + \frac{1}{2} \sum_{i \neq i} \frac{e^{2}}{|r_{i} - r_{j}|} - \sum_{\alpha \neq i} \frac{Z_{\alpha} e^{2}}{|r_{i} - R_{\alpha}|} \end{split}$$

$$\begin{split} \frac{1}{2}\sum_{\alpha} \frac{p_{\alpha}^{2}}{2M_{\alpha}} + \sum_{i} \frac{p_{i}^{2}}{2m} + \frac{1}{2}\sum_{\alpha\neq\beta} \frac{Z_{\alpha}Z_{\beta}e^{2}}{|R_{\alpha} - R_{\beta}|} + \frac{1}{2}\sum_{i\neq j} \frac{e^{2}}{|r_{i} - r_{j}|} - \sum_{i\alpha} \frac{Z_{\alpha}e^{2}}{|R_{\alpha} - r_{i}|} \\ H = H_{e} + H_{ion} \\ H_{ion} = \sum_{\alpha} \frac{p_{\alpha}^{2}}{2M_{\alpha}} + \frac{1}{2}\sum_{\alpha\neq\beta} \frac{Z_{\alpha}Z_{\beta}e^{2}}{|R_{\alpha} - R_{\beta}|} \\ H_{e} = \sum_{i} \frac{p_{i}^{2}}{2m} + \frac{1}{2}\sum_{i\neq j} \frac{e^{2}}{|r_{i} - r_{j}|} - \sum_{\alpha i} \frac{Z_{\alpha}e^{2}}{|r_{i} - R_{\alpha}|} \end{split}$$

1/M is our small parameter; Kin energy of nuclei is a perturbation in our hamiltonian, the wave function of the coupled system are linear combinations of electronic states that depend parametrically on R. These are the so called adiabatic states.

$$H_{ion}\Psi = -\frac{\hbar^2}{2M}\frac{\partial}{\partial R^2}(\phi(R$$

There are many approximations that we can use to simplify the Sc.

•Adiabatic approximation (Born-Oppenheimer) M>>m (Ziman, P. 200)

$$\Psi = \phi_e(R, r)\chi(R)$$
$$H_e \Psi = \chi(R)E_e(R)\phi(R, r)$$

 $(R, r)\chi(R) + V_{ion}(R)(\phi(R, r)\chi(R))$

 $H\Psi = \phi(r,R) \{-\sum_{\alpha} \frac{\hbar^2 \partial^2}{2M \partial R_{\alpha}^2} + E_e(R) + V_i on(R) \} \chi(R) - \sum_{\alpha} \frac{\hbar^2}{2M} (2\frac{\partial \chi}{\partial R_{\alpha}} \frac{\partial \phi}{\partial R_{\alpha}} + \chi(R)\frac{\partial^2 \phi}{\partial R^2})$ $H\Psi = \epsilon \Psi$ $H_{ion}^{new} \chi(R) = \epsilon \chi(R)$ Where H_{ion}^{new} is an eq. for a wave function of the ions alone. This is the basic equation for the calculation of

M~10⁴ m, so the approximation is very good. But we are ignoring electronic transitions induced by the ionic motion (ephonon interactions, which give rise to non diagonal terms in the Total Hamiltonian!)

The reduction of the Full wave function to an expression of the type:

is not completely correct, because, even if the system was initially prepared in a pure state like the above one, the off diagonal terms will mix (excite) the different electronic eigenstates along the temporal evolution.

phonons in the adiabatic approximation.

 $\Psi(R,r) = \chi(R)\phi(R;r)$

Wave function decoupled, Classical nuclei

$$\hat{H} = \sum_{i} -\frac{\hbar^2}{2m_e} \nabla_i^2 + \sum_{\alpha} -\frac{\hbar^2}{2M_\alpha} \nabla_{\alpha}^2 + \frac{1}{2} \frac{1}{2M_\alpha} \nabla_{\alpha}^2 + \frac{1}{2} \frac{1}{2$$

Electrons

Nuclei

$$\vec{F}_{\alpha} + E_{n}^{el}\left(\{\vec{R}_{\alpha}\}\right)$$
amics
$$\vec{F}_{\alpha} = -\frac{\partial E_{0}^{el}\left(\{\vec{R}_{\mu}\}\right)}{\partial \vec{R}_{\alpha}}$$