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Course Grading

There will be one midterm and a final exam. Midterm will be a short (1.5 h
long) exam. The final exam will cover everything. Exams will be very much
In line with homeworks. Each exam will be only 25% of the course.
Homework will be another 50% of the course.

At the end of the semester there will also be a journal club style
presentation on a paper chosen by you, from a list of papers | will make
available. This will be graded as a homework.

Assignments : 50% Every second week (7 assignments, Brightspace)
Midterm | : 25% Date TBD
Final: 25% (can replace grade of MT1 or MT2 whichever is lower).



What is a solid?

Result of interactions between ~1023 atoms yield a geometric structure that maintains its
shape.

How can we understand the properties of a
solid in terms of its atomic composition and
geometric structure?

eStructural properties (mechanical
properties, crystal
Structure + structure,surfaces...)
*Electrical properties (resistivity,
conductivity, I/V characteristics, Hall
effect)
* Thermal properties (specific heat,
thermal conductivity)
*Optical properties (color, response
to EM fields)

Composition



Bonding properties of solids: How much of the individual atom is kept!?
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Just considering electrical properties there is a huge variation

Solid Resistivity
Insulator |014-1022 (Qcm
28 orders
Semiconductor 10-2-108 (Qcm of
’ "
Metal 06 Ocrr magnitude!!
Superconductor 0

Well, we can use a theory of everything, we know the equation
for it!
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Ground-state energy (without E; nie): Eo =< wg|H |[tg > with:
® g = g|rioq,...,rNyoN| antisymimetric
e |Yg|ri01,....,TNON) |2d'r1..d-rN probability of finding electron i in |r;,r;+dr;].
e n(r)=p(r)=<o|)_,d(r —ri)|tbo > charge density

o po(r,r') =< Uy Zz;éj r—1;)0(r" —r;)|o > density of pairs, etc.

Problem: We don’t know g ! We could use variational

principle. However with v = #|r1o1,...,ryon], calculat- =
ing < ¥|H|v > would require (ngrid)*" ~ 103" opera- :
tions (for small molecule). With 10** flops machine = T
centuries.

Note 2018: tera, peta, exa... 1018... still years for realistic systems.



“The general theory of qguantum mechanics is now
almost complete. The underlying physical laws
necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the
exact application of these laws leads to equations
much too complicated to be soluble.”

Dirac, 1929



Elementary excitation model

Description of solids in the elementary excitation model.:
Excitations can emerge when the system is not in the ground state. We need to know

the energy spectrum and the density of states (i.e statistics of the system, fermions or
bosons)

Interaction among different excitations: How they appear, disappear and interact with
external probes

Quasiparticles (usually fermions) not too different from the excited states of the particles they
arise from

Collective excitations (usually bosons): very different from the underlying particles
excitations.

Generalized harmonic oscillators (2nd Quantization)

(a) (b)

FE = hck

Energy E
Energy E

Wavevector k Wavevector k
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Quasiparticles

Quasielectrons: or electrons. Particles that behave like non-interacting electrons in low
lying excited states. Fermions. Ex. Electrons in solids (mass renormalization of free
electron). Typical excitation energies are of the order of coulomb energy of 2 e on a lattice
of lattice parameter a (e*2/a ~ 5 eV). typical v ~(e*2/am)?(1/2) ~ 108 cm/s

Hole: opposite charge of a quasilectron

Phonon: Collective excitation of the lattice (boson). wave vector q, polarization mode and
energy hw. Energies of order of Ko Tp (Td room T, 300K, so energies of order of meV)
Plasmon: Collective excitation (boson) of the electrons (charge density fluctuation) Wave
vector q and energy of order of classical plasma energy: hwp, ~ 10 eV for metals but can be
much smaller if electron density n is small (hwp=h(4rtne”2 / m )A1/2)

Magnon: Collective excitation of spins (spin waves). Energies of ~0.0001 eV, but can be as
high as 0.1 eV)

Polaron: Type of quasilectron Electron+lattice deformation. Very heavy electron. Can be
though as a phonon dressed electron. Binding energies ~ 10-100 meV

Exciton: Bound state of a quasilectron and a hole. Binding energies of 0.025 eV. Typical in
semiconductors and insulators.

Superconducting quasiparticle: Fermions, electronic excited states of a superconductor
(cooper particles or Bogoliubons). Linear combination of electrons and holes. Energies ~ Tc
~ 105102 eV

MarvinCohen_Fig.1.5
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Dispersion curves
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Interactions among quasiparticles: quasiparticle-boson
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Interactions among quasiparticles: quasiparticle-boson
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Interactions among quasiparticles: quasiparticle-

guasiparticle interactions
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Electron-hole Coulomb interaction

Electron self energy (k) emits and absorbs a phonon (q)

Electron self energy (k) emits and absorbs a plasmon (q)

Electron-electron Coulomb interaction or photon exchange

Electron-electron interaction via phonon exchange
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Interactions among quasiparticles: collective excitation
Interactions

(a) —q’

phonon-phonon scattering

(b)
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Interactions among quasiparticles: collective excitation
Interactions
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Couple modes from bare collective excitations
(a) optical phonon-photon complex (polariton) (b) longitudinal optical phonon-plasmon complex
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There are many approximations that we can use to simplify the Sc.
eq. for the solid:
*Adiabatic approximation (Born-Oppenheimer) M>>m (ziman, P. 200)

Separate the ionic problem for the electronic problem

2 2
B Pa | z | ZQZQ€ |
H = 2M.,, | | 1/22 ‘R —R5| | 1/22 |T _TJ| Z ‘R _TZ
o 0 a3 1F#]
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Hion = 2];\; ’ QZ\R 6; |
o T o
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H, = L

- 2m 2;‘7‘@'—7‘]" ;‘T‘Z‘—Ra|

1/M is our small parameter; Kin energy of nuclei is a perturbation in our
hamiltonian, the wave function of the coupled system are linear
combinations of electronic states that depend parametrically on R. These

are the so called adiabatic states. U = ¢.(R,7)x(R)
H, W = x(R)E.(R)p(R, )
h? 0

HionW = =55 (9B, 1)X(R)) + Vion (R) (8(R, )X (R))




— € \ Where Hion"" is an eq. for a wave
function of the ions alone. This is the
= €Y ( R) basic equation for the calculation of
phonons in the adiabatic approximation.

M~104 m, so the approximation is very
good. But we are ignoring electronic
transitions induced by the ionic motion (e-
phonon interactions, which give rise to
non diagonal terms in the Total
Hamiltonian!)

The reduction of the Full wave function to an expression of the type:
U(R,7) = x(R)p(R;T)

IS not completely correct, because, even if the system was initially prepared in a
pure state like the above one, the off diagonal terms will mix (excite) the different
electronic eigenstates along the temporal evolution.



Wave function decoupled, Classical nuclel
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