Modern theory of solids was founded on an attempt to explain all these properties.

Fundamental elements favor metallic state. We need to understand non metallic materials to understand metals: Why gold conducts so well and salt does not?

Drude Model for metals

Metals have properties that were not explainable using basic laws of physics: They have properties that other materials lack (quartz, sulfur, salt...): Excellent electric & thermic conductors • Ductile & malleable reflectivity

Drude Model for metals (1900), after Thomson (1897) ediscovery

Fundaments: Kinetic theory of gases

• atoms= rigid spheres • they move in straight lines until they collide time of collision--> negligible (forces only relevant during collision)

• Metals: Formed by + (heavier, fixed) and - particles.

Pseudopotential:

Drude model: Kinetic theory of (conduction) e- of mass m

Some numbers: $1 \text{ mol } N_{A}$ --> 6.02 $*$ 10 ²³ atoms/mol.

$$
\rho_m = \; mass \; density
$$

Measurement of the e- density: radius of a sphere with volume (V) = volume per conduction e.

$$
\rho_m/A \qquad mol/cm^3 \qquad \rho_m = \; mass \; density
$$

$$
n = \frac{N \to \#e^-}{V \to Volume} = N_A \cdot Z \, .
$$

$$
Z\cdot\frac{\rho_m}{A}
$$

Important parameter: rs

$$
\frac{V}{N} = \frac{1}{n} \Longrightarrow r_s = \left(\frac{3}{4\pi n}\right)^{1/3}
$$

large r_s --> sparse, small r_s -->dense

$$
a_0 = \hbar^2/(me^2) = 0.529\AA = 1Bohr
$$

 r_s/a_0 is the usual measurement of the density of valence e⁻.

Table 1.1 FREE ELECTRON DENSITIES OF SELECTED METALLIC ELE-

ELEMENT	Ζ	$n(10^{22}/\text{cm}^3)$	$r_s(\text{\AA})$	r_s/a_0	A& M table 1.1
Li $(78 K)$		4.70	1.72	3.25	
Na $(5 K)$		2.65	2.08	3.93	
K(5K)		$1.40 -$	2.57	4.86	
Rb(5K)		1.15	2.75	5.20	
Cs $(5 K)$		0.91	2.98	5.62	
Cu		8.47	1.41	2.67	
Ag		5.86	1.60	3.02	
Au		5.90	1.59	3.01	
Be	っ	24.7	0.99	1.87	
Mg	\mathcal{D}	8.61	1.41	2.66	
Ca	2	4.61	1.73	3.27	
Sr	2	3.55	1.89	3.57	
Ba	$\overline{2}$	3.15	1.96	3.71	
Nb		5.56	1.63	3.07	
Fe	◠	17.0	1.12	2.12	
$Mn(\alpha)$		16.5	1.13	2.14	
Zn		13.2	1.22	2.30	
Cd		9.27	1.37	2.59	
Hg (78 K)		8.65	1.40	2.65	
Al		18.1	1.10	2.07	
Ga		15.4	1.16	2.19	
In		11.5	1.27	2.41	
Tl		10.5	1.31	2.48	
Sn	4	14.8	1.17	2.22	
Pb	4	13.2	1.22	2.30	
Bi	5.	14.1	1.19	2.25	
Sb	5	16.5	1.13	2.14	

us r_s of the free electron sphere is defined in Eq. (1.2) . We have arbitrarily selected one value of Z for those elements that display more than one chemical valence. The Drude model gives no theoretical basis for the choice. Values of n are based on data from R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963.

Drude's model assumptions:

I. Electrons move freely (Newton's Laws) between collisions (no e-e-, no e-ion) 2.Abrupt collisions (with ions)

3.Average collision time=τ, ℓ =ντ→ mean free path. $1/\tau =$ prob. of collision / unit time. 4.Memory washing collisions: v after collisions depends only on the T at the collision site.

 $3/2k_BT = 1/2mv^2$

Equation of motion for e- (Newton's Law), in the presence of a uniform magnetic or E field.

- Prob. of collision between t and t+dt= dt/τ
- Prob. of no collision = (1-dt/τ)
- e- that do not collide change their momentum by the external field (E):

 \bar{f} *f*(*t*)*dt* $f(t)dt$ = $\vec{p}(t) - (dt/\tau)\vec{p}(t) +$ \bar{f} *f*(*t*)*dt*

•Contribution to the change in momentum by the e- that have suffered a collision:

$$
1 \qquad (1 - dt/\tau)(\vec{p}(t) + \vec{f}(t))
$$

$$
2 \quad dt/\tau(\mathcal{J} + \vec{f}(t)dt) \approx dt^2 \implies neglect
$$

0*, random direction*

•So: $(\vec{p}(t) + dt) = 1 + 2 = 1$

•So, change in momentum of the e- gas :

$$
\frac{\vec{p}(t)}{dt} = -\frac{\vec{p}(t)}{\mathcal{T}} + \vec{f}(t)
$$

frictional drag force

DC electrical conductivity

- •Ohm's Law: V=I R
	- P p=resistivity \Rightarrow characteristic of the metal.
	-

$$
\Delta V = V_2 - V_1 = EL = \rho I / AL \Longrightarrow R =
$$

•n e-/V_{olume} move with velocity \vec{v} current density \vec{j}/\vec{v} •n A |v| dt e- will cross area A (note q=-e), so in dt the charge crossing the area A =-ne |v| A dt

$$
j = q/(tA) = -ne|v|; \vec{j} = -ne\vec{v} \qquad \vec{v} = \vec{p}/m
$$

 $DC \rightarrow d\vec{p}/dt = 0 \rightarrow \vec{p}(t) = \tau$ \bar{f} *f*(*t*)

 $\vec{p} = -e\vec{E}$ $\bar{\bar{E}}$ τ

$$
DC \rightarrow d\vec{p}/dt =
$$

$$
\vec{f} = -e\vec{E} \rightarrow \vec{p}:
$$

= $ne^2\tau$ *m E* $\bar{\bar{E}}$

$$
\vec{j} = -ne \frac{-e\vec{E}\tau}{m}
$$

- •τ can be estimated using observed resistivities. τ∼ 10-14, 10-15 s
- the velocity can be obtained from the classical equipartition of energy $1/2$ mv₀^{2=3/2k_B T \Rightarrow v₀~ 10⁷ cm/s.}

wrong in v_0 !) : wrong classical dynamics and wrong picture of scattering. In reality v_0 is independent of T!

$$
\vec{j} = \sigma \vec{E} \leftarrow 0
$$
\n
$$
\sigma = \frac{ne^2 \tau}{m}
$$
\n
$$
Dr
$$

Ohm sLaw

rude conductivity

l∼1-10 Å, consistent with Drude's model but not with reality (1 order of magnitude

•τ independent quantities will yield much more realistic information.

$$
n_e = \frac{ne^2\tau}{m}
$$

Drude σ

$$
\sigma_{Drude,ac} = \frac{ine^2}{m(\omega + i/\tau)}
$$

Drude ac

- 1. These work surprisingly well; ac version is fine.
- 2. Quantum version is definitely needed. Issues: n/m, 1/τ
- 3. Bohr's doctoral dissertation clarified problems with 1/τ
-

4. Sommerfeld's quantum electron gas theory clarified other problems.

atom; σ _x is scattering cross section.

example: Quantum theory (Bloch) shows that electrons diffract around atoms, only scattering from impurities; Classical theory says all atoms scatter.

> statistics says resistivity of a metal ale as $T^{1/2}$. Quantum theory replaces Quantum statistics (Fermi velocity thermal velocity) correctly gives the impurity scattering part to be independent of T

$$
\ell \sigma_X = \overline{v} \tau \sigma_X = \frac{1}{n}
$$
 = volume per a
Classical s

$$
\frac{1}{\tau} = n \sigma_X \overline{v} \propto T^{1/2}
$$
 n by n_{imp}.
instead of t

Conductivity: $\vec{j} = \vec{\sigma} \cdot \vec{E}$ \overrightarrow{P} \overrightarrow{E} \overrightarrow{E} $=\vec{\sigma} \cdot$ Example or hexagon

j is in A/m², E in V/m, σ is in (Ωm)⁻¹, ρ=1/σ is resistivity (μΩcm)

Fig. 1. Schematic of a four-probe measurement of electrical conductivity. Current *I* is fed through the outer leads, and voltage drop V is measured on the inner leads. In this way the contact potential drop experienced by the applied current is localized at the junctions with the outer leads. Measuring V with minimal current through the voltmeter minimizes the contact potential contribution to the measured conductance $G = I/V$.

typical metallic conductivity: $\rho \sim 10 \mu\Omega$ cm = 10⁻⁷ Ωm $\rightarrow \sigma$ = 10⁷ (Ωm)⁻¹ $E = 1$ V/m \rightarrow j = 10⁷ A/m²

- tetragonal and symmetry.	$\vec{\sigma} = \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$
-------------------------------	--

Fig. 2. Electrical conductivity of magnesium diboride (MgB₂), plotted, as is customary for metals, as resistivity (ρ) versus temperature (T). The unit $10^{-8} \Omega \cdot m$ is often written as 1 micro-ohm cm or 1 $\mu\Omega$ -cm. Below T = 40 K = -233° C, MgB₂ is a superconductor with $\rho = 0$. A fit using Bloch-Grünisen theory, explained in the text, is also shown. (Data from Z.X. Ye et al., Electron scattering dependence of dendritic magnetic instability in superconducting $Mg_{\mathcal{B}_{2}}$ films, Appl. Phys. Lett., 86:5284-5286, 2004)

$$
\Rightarrow R_H = \frac{E_y}{j_x H} \qquad Lorentz \quad \vec{f} = -\frac{e}{c} \vec{v} \times \vec{H}
$$

Hall Effect

•Hall E_y field \Rightarrow negative y direction \Rightarrow R_h negative (reverses if there are positive carriers) • Hall effect used to measure the nature of carriers (e- or holes)

$$
\vec{f} = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{H})
$$
\n
$$
\frac{d\vec{p}}{dt} = -e(\vec{E} + \frac{\vec{p}}{mc} \times \vec{H}) - \frac{\vec{p}}{\tau} = 0 \Longleftarrow steady \quad state
$$

Solving in the x and y axis and balancing forces $(j_y=0, no$ current along y)we arrive to:

$$
\vec{f} = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{H})
$$

$$
\sigma_0 = \frac{ne^2\tau}{m} \qquad \vec{j} = -ne\vec{v} = -ne\vec{p}/m
$$

$$
\frac{-\frac{eH}{mc}\tau}{\frac{ne^2\tau}{m}}j_x=-\frac{H}{nec}j_x
$$

Yields sign and density of charge carriers

Problems

- \bullet R_H can be -
- •RH depends on H
- •RH depends on T

E_x