Drude Model for metals

Metals have properties that were not explainable using basic laws of physics:
They have properties that other materials lack (quartz, sulfur, salt...):
Excellent electric & thermic conductors
Ductile & malleable
reflectivity

Modern theory of solids was founded on an attempt to explain all these properties.

Fundamental elements favor metallic state.We need to understand non metallic materials to understand metals:Why gold conducts so well and salt does not?

Drude Model for metals (1900), after Thomson (1897) e⁻ discovery

Fundaments: Kinetic theory of gases

• atoms= rigid spheres • they move in straight lines until they collide time of collision--> negligible (forces only relevant during collision)

• Metals: Formed by + (heavier, fixed) and - particles.

Pseudopotential:

$$\rho_m/A \qquad mol/cm^3$$

$$n = \frac{N \to \#e^-}{V \to Volume} = N_A \cdot$$

Important parameter: r_s

Measurement of the e- density: radius of a sphere with volume (V) = volume per conduction e^{-} .

$$\frac{V}{N} = \frac{1}{n} \Longrightarrow r_s = \left(\frac{3}{4\pi n}\right)^{1/3}$$

large r_s --> sparse, small r_s-->dense

Drude model: Kinetic theory of (conduction) e- of mass m

Some numbers: I mol N_A--> 6.02×10^{23} atoms/mol.

$$\rho_m = mass density$$

$$Z \cdot \frac{\rho_m}{A}$$

$$a_0 = \hbar^2 / (me^2) = 0.529 \mathring{A} = 1Bohr$$

 r_s/a_0 is the usual measurement of the density of valence e⁻.

Table 1.1 FREE ELECTRON DENSITIES OF SELECTED METALLIC ELE-MENTS^a

ELEMENT	Ζ	$n (10^{22}/\text{cm}^3)$	$r_s(\text{Å})$	r_s/a_0	AQ M table I
Li (78 K)	1	4.70	1.72	3.25	AX IT LADIE I.I
Na (5 K)	1	2.65	2.08	3.93	
K (5 K)	1	1.40	2.57	4.86	
Rb (5 K)	1	1.15	2.75	5.20	
Cs (5 K)	1	0.91	2.98	5.62	
Cu	1	8.47	1.41	2.67	
Ag	1	5.86	1.60	3.02	
Au	1	5.90	1.59	3.01	
Be	2	24.7	0.99	1.87	
Mg	2	8.61	1.41	2.66	
Ca	2	4.61	1.73	3.27	
Sr	2	3.55	1.89	3.57	
Ba	2	3.15	1.96	3.71	
Nb	1	5.56	1.63	3.07	
Fe	2	17.0	1.12	2.12	
Mn (α)	2	16.5	1.13	2.14	
Zn	2	13.2	1.22	2.30	
Cd	2	9.27	1.37	2.59	
Hg (78 K)	2	8.65	1.40	2.65	
Al	3	18.1	1.10	2.07	
Ga	3	15.4	1.16	2.19	
In	3	11.5	1.27	2.41	
T 1	3	10.5	1.31	2.48	
Sn	4	14.8	1.17	2.22	
Pb	4	13.2	1.22	2.30	
Bi	5	14.1	1.19	2.25	
Sb	5	16.5	1.13	2.14	

^a At room temperature (about 300 K) and atmospheric pressure, unless otherwise noted. The radius r_s of the free electron sphere is defined in Eq. (1.2). We have arbitrarily selected one value of Z for those elements that display more than one chemical valence. The Drude model gives no theoretical basis for the choice. Values of n are based on data from R. W. G. Wyckoff, *Crystal Structures*, 2nd ed., Interscience, New York, 1963.

Drude's model assumptions:

I.Electrons move freely (Newton's Laws) between collisions (no e-e-, no e-ion) 2.Abrupt collisions (with ions)

3. Average collision time= τ , $\ell = v\tau \rightarrow$ mean free path. $1/\tau = prob.$ of collision / unit time. 4. Memory washing collisions: v after collisions depends only on the T at the collision site.

 $3/2k_BT = 1/2mv^2$

Equation of motion for e- (Newton's Law), in the presence of a uniform magnetic or E field.

- Prob. of collision between t and t+dt= dt/T
- Prob. of no collision =($I dt/\tau$)
- e- that do not collide change their momentum by the external field (E):

$$1 \qquad (1 - dt/\tau)(\vec{p}(t) + \vec{f}(t))$$

•Contribution to the change in momentum by the e- that have suffered a collision:

2
$$dt/\tau(\vec{x} + \vec{f}(t)dt) \approx dt^2 \Longrightarrow neglect$$

= 1

0, random direction

•So:
$$(\vec{p}(t) + dt) = 1 + 2$$

•So, change in momentum of the e- gas :

ntum by the external field (E): $\vec{f}(t)dt$ $\vec{f}(t) = \vec{p}(t) - (dt/\tau)\vec{p}(t) + \vec{f}(t)dt$

$$\frac{\vec{p}(t)}{dt} = -\frac{\vec{p}(t)}{\tau} + \vec{f}(t)$$

frictional drag force

DC electrical conductivity

- •Ohm's Law:V=I R
 - • ρ =resistivity \Rightarrow characteristic of the metal.

$$\Delta V = V_2 - V_1 = EL = \rho I / AL \Longrightarrow R =$$

•n e-/V_{olume} move with velocity \vec{v} current density \vec{j}/\vec{v} •n A |v| dt e-will cross area A (note q=-e), so in dt the charge crossing the area A =-ne |v| A dt

$$j = q/(tA) = -ne|v|; \vec{j} = -ne\vec{v} \qquad \vec{v} = \vec{p}/m$$

$$DC \rightarrow d\vec{p}/dt$$
 =

$$\vec{f} = -e\vec{E} \rightarrow \vec{p} =$$

$$\vec{j} = -ne\frac{-e\vec{E}\tau}{m}$$

$$\vec{j} = \sigma \vec{E} \qquad \leftarrow 0$$

$$\sigma = \frac{ne^2 \tau}{m} \qquad Dr$$

•T can be estimated using observed resistivities. $T \sim 10^{-14}$, 10^{-15} s • the velocity can be obtained from the classical equipartition of energy $1/2 \text{ mv}_0^2 = 3/2k_B T \Rightarrow v_0 \sim 10^7 \text{ cm/s}.$

wrong in $v_0!$) : wrong classical dynamics and wrong picture of scattering. In reality v_0 is independent of T !!

•T independent quantities will yield much more realistic information.

 $= 0 \rightarrow \vec{p}(t) = \tau \vec{f}(t)$

 $= -e\vec{E}\tau$

 $= \frac{ne^2\tau}{E}\vec{E}$ \mathcal{M}

Ohm'sLaw

rude conductivity

 $\ell \sim 1-10$ Å, consistent with Drude's model but not with reality (1 order of magnitude)

 σ_{Drude}

σ_{Drude}

- 1. These work surprisingly well; ac version is fine.
- 2. Quantum version is definitely needed. Issues: n/m, 1/T
- 3. Bohr's doctoral dissertation clarified problems with 1/T

example: Quantum theory (Bloch) shows that electrons diffract around atoms, only scattering from impurities; Classical theory says all atoms scatter.

$$\ell \sigma_{X} = \overline{v} \tau \sigma_{X} = \frac{1}{n} = \text{volume per a}$$

$$\frac{1}{\tau} = n \sigma_{X} \overline{v} \propto T^{1/2}$$

$$r_e = \frac{ne^2\tau}{m}$$

$$_{,ac} = \frac{ine^2}{m(\omega + i/\tau)}$$

4. Sommerfeld's quantum electron gas theory clarified other problems.

atom; σ_X is scattering cross section.

statistics says resistivity of a metal ale as T^{1/2}. Quantum theory replaces Quantum statistics (Fermi velocity thermal velocity) correctly gives the impurity scattering part to be independent of T

Example $\vec{j} = \vec{\sigma} \cdot \vec{E}$ Conductivity: or hexago

j is in A/m², E in V/m, σ is in (Ω m)⁻¹, ρ =1/ σ is resistivity ($\mu\Omega$ cm)

Fig. 1. Schematic of a four-probe measurement of electrical conductivity. Current I is fed through the outer leads, and voltage drop V is measured on the inner leads. In this way the contact potential drop experienced by the applied current is localized at the junctions with the outer leads. Measuring V with minimal current through the voltmeter minimizes the contact potential contribution to the measured conductance G = I/V.

typical metallic conductivity: $\rho \sim 10 \ \mu\Omega cm = 10^{-7} \ \Omega m \rightarrow \sigma = 10^{-7} \ (\Omega m)^{-1}$ $E = 1 V/m \rightarrow j = 10^7 A/m^2$

- tetragonal onal symmetry.
$$\vec{\sigma} = \begin{pmatrix} \sigma_{xx} & 0 & 0 \\ 0 & \sigma_{xx} & 0 \\ 0 & 0 & \sigma_{zz} \end{pmatrix}$$

(MgB₂), plotted, as is customary for metals, as resistivity (ρ) versus temperature (7). The unit $10^{-8} \Omega \cdot m$ is often written as 1 micro-ohm cm or 1 $\mu\Omega$ -cm. Below $T = 40 \text{ K} = -233^{\circ}\text{C}$, MgB₂ is a superconductor with $\rho = 0$. A fit using Bloch-Grünisen theory, explained in the text, is also shown. (Data from Z. X. Ye et al., Electron scattering dependence of dendritic magnetic instability in superconducting MgB₂ films, Appl. Phys. Lett., 86:5284-5286, 2004)

•Hall E_y field \Rightarrow negative y direction $\Rightarrow R_h$ negative (reverses if there are positive carriers) •Hall effect used to measure the nature of carriers (e- or holes)

$$\vec{f} = -e(\vec{E} + \frac{\vec{v}}{c} \times \vec{H})$$
$$\sigma_0 = \frac{ne^2\tau}{m} \qquad \vec{j} = -ne\vec{v} = -ne\vec{p}/m$$

Hall Effect

$$\Rightarrow R_H = \frac{E_y}{j_x H} \qquad Lorentz \quad \vec{f} = \frac{-e}{c} \vec{v} \times \vec{H}$$

$$\frac{d\vec{p}}{dt} = -e(\vec{E} + \frac{\vec{p}}{mc} \times \vec{H}) - \frac{\vec{p}}{\tau} = 0 \iff steady \quad state$$

Solving in the x and y axis and balancing forces $(j_y=0, no current along y)$ we arrive to:

$$_{x} = -\frac{H}{nec}j_{x}$$

Yields sign and density of charge carriers

Problems

- •R_H can be -
- •R_H depends on H
- $\bullet R_H \, depends \, \, on \, T$

E,