and the control of the ________ ______ <u> Albany a Communication and the Communication</u> P

Density of states & Greens Functions - Courider a system described by a Hamiltonian - Demity of States: DE) = (E-Em) * Projected deuxity of states for an activital p. $n_e(E) = \sum_{m} |\langle \phi, |\psi_m \rangle|^2 \int (E-E_m)$ Some Paris Jurisier Eigenfonc of H - Define The (ceTarded) Green's Fr. $G(E+i\varepsilon) = \frac{1}{(E+i\varepsilon)\pi - H}$ NeW matrix
infinitesimal $\varepsilon > 0$ NeW identity matrix 0 Since Hiro a motrix, so is 6

H Cavrider the upper left element: G_{o} $(E+i\varepsilon)=\langle\phi_{o}|$ $\frac{1}{(E+i\varepsilon)+H}|\phi_{o}\rangle$ $=\langle \varphi_{0}|\nsubseteq |\psi_{m}><\psi_{m}| \qquad |\varphi_{0}>$ $\frac{1}{2} \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} \right| \right| \left| \frac{1}{\sqrt{2}} \right| \leq \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{$ G_{oo} $(E+i \varepsilon) = \mathcal{E} |\langle \phi_{o} | \psi_{m} \rangle|^{2} E E_{m-i} E$
 $* \text{Vning}: \lim_{\varepsilon \to 0^{+}} \frac{1}{n} \frac{\varepsilon}{(\varepsilon - \varepsilon_{m})^{2} + \varepsilon^{2}} = \frac{1}{n} (\varepsilon - \varepsilon_{m})$ We can define The PDOS $\bigcap_{\sigma\in\mathcal{S}} P_{\sigma}(\epsilon) = \frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \mathcal{F}_{m} G_{\sigma}(\epsilon)$

gives Total DOS $\bigcap_{\sigma\in\mathcal{S}} \epsilon$ $\bigcap_{\sigma\in\mathcal{S}} \epsilon$ $\bigcap_{\sigma\in\mathcal{S}} \epsilon$ $\bigcap_{\sigma\in\mathcal{S}} \epsilon$

Cau also get DOS from suring bispersion avec K $D(E)=\sum_{k}\{\int_{E-z}\}\cos(k\alpha)$ 10 TB Hamiltonian
E(k) = E = Z d'OS (ka) W Th E = 0 Courer To continuousek: $K \rightarrow N_{\alpha}$ $\int_{\alpha}^{\eta/\alpha} dK$ (reall $k = \frac{2\eta}{N_{\alpha}}$ n) $S_{0}:D(E)$ $\frac{N_{0}}{2M}$ $\frac{N_{0}}{2M}$ $\frac{1}{2}E-2\delta cos(k\omega)$ $\nu\omega$
 $\left\{\left[\int_{0}^{a}f(x)\right]=\frac{\int_{0}^{a}f(x-x)}{\int_{0}^{a}f(x)}\right\}$ $\mathcal{D}(f)=\frac{N_{a}}{27}=\frac{1}{12Ja\sin(k,a)}\frac{k_{a}-\frac{1}{a}\arccos(\frac{E}{27})s.}$ $D(E) = \frac{N_{a}}{\pi} \left[2 \text{Tr} \left[\arccos \left(\frac{E}{2} \right) \right] \right] = \frac{N}{\pi} \sqrt{4 \gamma^{2} + 2}$ $E[V \cdot \eta(\epsilon)]$ (for $|\epsilon| < z(Y)$)

Dynamical aspects of e^- in bouds - What close does bound structure Tell vor about how et behave?
Tree c : $W(k,x)=\frac{1}{\sqrt{2}}e$, $C(k)=\frac{\hbar^{2}k^{2}}{2m}$ - Plane Warco are eigen foi et momentain. \hat{p} $|w_n>$ = $-k$ d $|w_n>$ = k $|w_n>$ Now consider et in a periodic potential i $\rightarrow For bound E_n(k) / WF. \bigvee_{n,k} (k) = 0 (k) e$ \hat{P} $|\psi_{n,h}\rangle$ = $\frac{1}{h}$ $k\psi_{n,h}$ (x) - $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ $\frac{1}{h}$ Elsch WF is not en cignofo of p BoTtk, evenif Tis not the real momentum is still

De Cousider The "Senic Lassical e-velocity" $\overline{V}(k) = \langle \psi_{n,k} | \frac{P}{m} | \psi_{n,k} \rangle$. We can relate Mis To E(h) : $k+1$ $E_{n,n} = \langle \psi_{n\kappa} | \frac{P^2}{2m} + \hat{V} | \psi_{n,n} \rangle$ with $\psi_{n\kappa} = C \psi_{n\kappa} (x)$ $\frac{2}{\pi}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ = $\frac{1}{\pi}$ $\frac{1}{\pi}$ = $\frac{1}{\pi}$ $\frac{1}{\pi$ $<\!\psi_{nn} |V\!C\!\cdot\!| \psi_{nn}>\, <\!\!\psi_{nn} |V\!| \psi_{nn}>$ Now Take derivative de Filipine hamiltonian for $=\left\langle \frac{d\theta_{n}}{dt}\right|\frac{1}{\theta_{n}}|U_{n}x>+\left\langle U_{n}\right\rangle \frac{d}{d\theta}\left(\frac{p_{+}}{2m}L\right)^{2}|U_{n}x>$ $+ < 0$ nk | Hu | LUnk > at 3 = En (L CUn, Unx) = 0 (2) = < v_{nn} $\left| \frac{\hbar}{m} (\rho + \hbar \kappa) \right| v_{nn}$

Return T. Jell ψ : $\frac{1}{t} \frac{dE(x)}{dx} = \psi_{nn} \frac{P}{m} |\psi_{nn}| = V(x)$ derivative of bouches gives semiclassical What does semiclassical mean ?: Takes some aspects To
.Q: Bandos
C: C dynamics couriders a classical particle in
a classical field -> Note Mix is all for intraband dynamics (some n
How short interband dynamics? In Back Ket) $d\left[\frac{1}{2m}(\rho\tau\hbar k)^2+V\right]|_{n\mu}>=d\left[\frac{1}{2m}(|_{n\mu}\rangle)\right]$ => k² (p+ k) Unu > + Hu | d Unu > d Enn (Unu > + Enn | d Unu) => Now you ttiply on left by < Um us m = n

 $\langle v_{m,n}|\frac{\pi}{m}(\rho_t\pi\kappa)|v_{nn}\rangle+\langle v_{mk}|\frac{\mu}{\kappa}\rangle\frac{d v_{nn}}{d\kappa}\rangle$ =< Umm) denn (Unn > + Enn < Umm) dUnn Vmk/ the p Uni = (Enn Emir) Wmx dVax . We can compare Miro T. Me expectation value of (HX)
which is a more general way of writting velocity:
Why? Huismberg eg. of motion dir . perstor $<\varphi$ _{mk} $[EH, F]$ $|\psi_{nk}\rangle = (Emk - Enk) \langle \psi_{nk} | F | \psi_{nk} \rangle$ $\overline{B_{\nu l}}\left[\begin{array}{c|c}H,r\end{array}\right]=\left[\begin{array}{c|c}P^{2}&V&\hat{r}\end{array}\right]=-i\frac{\hbar}{m}\rho$ S_{o} \vee \vee \vee \wedge \wedge \wedge \vee \vee introduced dipole matrix elements important pres for

What does tik , crystal momentum Tells vs? a) does til crystal momentum Tells us?
• Cousider the effect of a uniform et field $H = \frac{b^2}{2m} + UfcF_X$ [↓] electrix field, Breath periodicity ! A to prepare Block state Time evolution will be in the initial Block $\psi(x,t;F)=\exp(-\frac{1}{\pi\hbar}Ht)\psi(x,t)$ Tate · Now Translate pariable $x \rightarrow x+a$ ψ (x + a , t ; F)= exp(-1 Ht) exp(-1 eFat)e ψ (k, x) $\frac{\Psi(x+a,t)}{t} = \exp(-\frac{1}{h}Ht) \exp(-\frac{1}{h}eFat) e \Psi(x-a,t)$ e P(x, t;) F) part of the $K(t) = \frac{1}{\hbar} eF t + K_0$. The time evolved WF is Block Type with h changing linearly withTime

d[hK(t)] = = e F Force on e in peridic potential
dt = = e F from e field is cousistent with · Courider a single boud : semiclassical acceleration: $dV(k)$ of $\frac{1}{dk}$ deck) $\frac{1}{k}$ deck) dk $\frac{d^{2}E(k)}{dk^{2}}$ (eF) Newton like expression: $F=m^4a=\frac{1}{m^2}+\frac{d^2f(k)}{dk^2}$ effective mass from * Conductivity in bonds: · Consider a bound totally filled What is the arrest I? $I = \frac{Q}{L} = \frac{v}{Z} = -eV(k) = -ze = dE(k) = 0$ EdECH) = o Accourse E(H) = EC-K)

Remove au c'at state Kn

 $T_{n} = 2 E - eV(h) - (-e)V(h) = +eV(h)$

deffective arrent of "hole" Cooks like pasitively

Sulymateriale with partially filled bander

Bloch ascillations - What will happen if we continue to apply a field?

*K(E) = K = 1 = F = V(E) 1 DECK)
magnitude moreases linearly
(Frace E) Empty
(Frace E) = Hotting & Periodic potential $K = 7/2$ $\frac{1}{n_a}$ $\frac{1}{n_b}$

* Instead of Vincreasing in Time Gree e , empty l a $\left(t; \alpha \right)$ e motion will be oscillatory => Block Oscillations · Time To , = frequencyTo complete - oscillation : $T_{\beta} = \frac{2\pi\hbar}{\alpha eF}$ $\omega_{\beta} = \frac{2\pi}{T_{\beta}} = \frac{aeF}{\hbar}$ · Villates in space also Ex counder a TB pand $V(t)=$ $\frac{-z}{\hbar}$ sin($(k_{0}-\frac{eF}{\hbar})$ a) $x(t)$ = x_{\bullet} $\frac{2}{eF}$ sin $(L_{o}-eFE)$
- 20 $cos(fh_{o}-eFE)$ a - spatial * But in reality(real materials) we have scattering · No system has perfect periodicity · more on scattering later · vore ou scattering later Can only observe B.O of CUBZ >> (Changesillation Time
B Z > Not true in may materials" nc
>> 1 (
materials