


DuLong-Petit Law
Classical harmonic crystal We k
Vor+ ahpt at To V = 0% (Nozprate)
C =
O =3nlp - specific heat due to lattic
Of

vibrations (Total up, heat de from an insulator)
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G. E. Moyano, P. Schwerdtfeger, and K. Rosciszewski
“Lattice dynamics for fcc rare gas solids Ne, Ar, and Kr from ab initio potentials”
Phys. Rev. B 75, 024101 (2007).
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DuLong-Petit
regime 3NkB
3R=29.4J/moleK

crystalline Ar

Lattice specific heat (Einstein, 1907) generalized
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S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, 
Rev. Mod. Phys. 73, 515-62 (2001) – review of “ab initio” theory



IntermediateTemperative : Delaye and Einstein models

Debye
Albranches are eplaced by just3 ,

acoustic-like

branke (W=+) If there are more than 3 handle
we change the volume of integration.

-

-> The integral in g over the PBZ is changed
or the Dekye space.

Debye sphee contains N wave rectors
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wares ofshorterwavelength

↑ The laughtof a vitcel
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-> fattice won'tpropagate



= 9) ; Ko=&
Debye Temperature .

# Measse ofThe Temperate at which all modes
begin To be excited , bellowIn they begin to be

: frozen" out
, therefore wearves the stifness of The

crystal /

ye ex:
Got
! --(x= zN

&

How To choose Op ? Not unique ?

we can choose it so as Cr = Cr at low T (experimental)
for TE Go/ -> The integral tends to

G(+)u
~
comiat (i)

On playsThe role of To (Er =Kptf) in .

Above So

separates low T egion (granium statistics) from high tClassical
statistics).



Einstein el
-

-Apply only to the optical branches and brcribe acoustic
with einstein model .

a (g) Coptical) -1 Crj , independent .Sg.
-

-Einstein nocl

= (perbranch) -nwe wh We
t-

↓ We KT 2

2
- -

C = pnp (m/k)e
here/apt

Cetwe)
Eintric Good at high t (appoaches D-P).
at low I shows that optical moder decay exponentially
but says nothing about acoustic modes



3nk:3 C acoustic

· Metals: TBT&z
T electronic Ph.

-kn
Se [3·n
cit

F
8 Oe E

C= Uelectronic) -

·



nodensity of states&

f(q): gas
=It is more convinient to transform The integral into
a frequency integral

infrequency
g(a) - density of normal modes per unit volume.
g(w) do ->* of normal moder with a in The weasda

wi

range

int(f()) -- Sec)da for
In perfect anology withThe electonic danity of states

ga): d Sw-w())=gij

The integral is over a surface inThe Not B2 where

Wj(9)=a = constant

Because Wj(g) in periodic, There will be points where
j() = o (group velocity-c) .

These points will
& G



induce singularities in the AOS > Van Here singularities
DeModel
· All branches in the vibrational spectrum are replaced
by 3 acoustic branches => C =09

# degrees of freedom
= 3rN
---

all The modes & inside a sphere of radiusIo
g(w)= 3 f) fa-29)dg
·9p
-

3 -1dt

Go· cp
= tidgI

O w)Wp⑫
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Density of states
I like to use ω instead of ν.
The true mathematical 
meaning of Ziman’s expression
is correctly captured by the
Dirac delta function:

( ) ( ) ( ) ( )∫∑ −=−=
BZ

Q
c

BZ

Q
Q QdV

N
D r

r
r ωωδ

π
ωωδω 3

32
1

Debye model:
QvsQ

r
r ≈ω

EQ ωω ≈r

Einstein model:

BZ=sphere of volume
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saddle point
singularities
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Ziman pp 47-49
Van Hove singularities
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Phonous for a 52 in y
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From rele :
-

The force countant or describes The
force on

atom fcells
after displacing This atom by rector-&

Jum of all The forces that result after
displacing lThe NU by rector --&

oil
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To findThe dispassion corres :
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-Fromclassical to guantum :

(in Dirac Notation)
-

The harmonic
energy of any

collection of particles
isi Y Force

constant metrix

H = mu) u]=>

where I us in the displacement and
*EDIE]

15) = ↑10) in the man weighted displacement.
IS(x

, y ,z)]

· Now Diagonalize The dynamical matrix
-

5
= n- #M == ↑ - Q .

J
(j) =w()(8)

in This rotation
, I is the wave restor auchj is the

branch index for the3r branches
,

with u atous in

The wit all



· These sigenstates are complete ,
and we can use them

in The original hamiltonian Change f Paris).

·
=(j)
The result is :

H((j)n(j) + w()()-())
This has the form of uncoupledoscillators , but
has the unfortunateaspect of introducing the dynamical
variables -(j) and (5(9)) ,

which are complex
Since each variable has both real and imaginary
parts, there are twice as many

variables than we

need.

There is we avoiding of complex variables , butThe
problem of apparent excess variables inooked by compel
analysis.



Note thatI in a ral
, symmetric matrix, While

The ingunstates /@j) are necessarily complex because
Block Th . If a complex eigenvector in found for a

real matrix,
it is guaranteed that it's complex conjugate

restor is also an eigutate (au has the same eigemalve).
The complex conjugate of 18) AQ- ·e -

g.
This is a neweigenector that we car label -Ej3
This is equivalent to say

that we choose a phase convention,
that the phases of 18j > and 1-Qj) are forced to
be such that these states are complex conjugates of eachother.
The fegrencies &(j) are square

roots of the eigemalves,
andTherefore w(j) = cr(@j)
# also follower that staj) =(15) =<10 :S

&

This shows that there are only half as

many independant
dynamical variablesas appeared at first right.



Classical Teatment
--

5
. far, The algebra did not depend on

any
distinction

between classical and grantum mechanics.
In the classical traimant

,
The primitive variables :

-(a) = Mar() = (215) are real numbers,
/

windheras The new variables -(j) are complex.
Therotation in that s(1) is the mass weighted
displacement v([x) of the atom whose all in elevatedby-

I .
The additional or choices fr atoms in the collI

and a cartesian directions) are
all summarizedby

The index a

The general solution of Naton's law for the primitive
variables is :

v (a ,t) =M -(2 ,t) = Mc*al *(t)) :

-EMittal<j((t)
gj



&)= RM A-T -

T

where the amplitude -( ,)= /(t) of the J
normal mode has been written as a positive amplitude
A(j) Times a time dependent phase factor ePaj)-iwet
The rignnectors (j) of the dynamical matrix havethe

int

spatial representation : (11) =E()e .
- T

where Ex(j) in called the "polarization restor"

# is normalized by The eguation [E*Ej)
- S(, )f(jij)

It cannot in general be forced to be real , but it in forced
To obeyThe relation E(j)

*

=E(j)
# can be writen as a

real rector times a phase factor
E(j)= (j) exp(i0, (j)]



With Thes
, we can write the general solution of Newton's

Le as ~ Ca, ) =(
· cos[2 . T + 0(j) - w(g)t +P(j)]

·
Let's

say we
want tocelulate an average guantity like

(v([x ,+]v(Ed , t)) (correlation fraction)
In Thermal equilibrium The amplitudes A(G) are gaussian
random numbers with probability PCA(j))expe
while the phases $(G) are ranclowly distributed
between 0-2M (

Some trigonometrical relations that are
needed :

cos(x) cos(y) = (00(x+y) + as(x-y)]
<cs(d)) = & if I is

random



Then : <Cox + (G))]20(X +&( ,j))=

= tws(x -y) · f(, )f(jjj)

(u(( , +) v([2 = t)) =

↑(e)- )(
For example The Delge-Waller factor (see neutron
scattering cross section later) in

&Coleit):)
I

3rN Termer inThe sam
, Nausels/N

and so balancesThe squared e-vector



Gautum Treatment
· Start from The separated Kliagonalized) hamiltonian
H = ze(n(j)(j) + w()s(g)s(j))

G
-Let's introduce the new variables (second grantization)
* a(j) (j) -in(j)s(j)]
#

D S(j) ↳ (j) + in(j) (j)]

In Terms of These variables
,
The

energy :i) H-w()(a)(g) + (i)a())

(a(j) , (j) ach()- in(j) ) ,n()+in(j) )] =

- (j) , ((j)] =1



& This in because 5(G) =<15) are unitary
↑ (j) = (15). Transformations of

The variables
and the usual granium mecanical
commutatione relations -(2) :Stale>

-((a) =<Tals)
(p([x) , -(s)] = (= )SC,e) Sca ,a)

So in this new variables the Hamiltonian.

H = Ehw(j)(a(j)a(j) +=]
ej

Statistical
mages are easily found by reing :

Ca(j)a(j)=Sj)

For example To find the bebye-waller factor the first
step in to inverteg . *

sej) =:V(a(j) -a(j)]



Then using:
·(a) Ma(a) = Mail-EM

g
· (a)

#ite((j)+
with (D) =

Bore-Einstein distribution
function



A. S. Cote, I. Morrison, X. Cui X, S. Jenkins, and D. K. Ross,
Ab-initio density-functional lattice-dynamics studies of ice

CAN. J. PHY. 81, 115 (2003).
8 molecules/cell Î 72 branches

“OH stretch” modes
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G. Dolling, R. A. Cowley, C. Schittenhelm, and I. M. Thorson,
Normal Vibrations of Potassium Iodide, Phys. Rev. 147, 577 (1966)

[inelastic neutron scattering experiment] 

gap
“reststrahl band”

lines are a force-constant
model fitted to data

DOS computed
from force 

constant model

A nice 3-d saddle point
van Hove singularity
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