B

Lecture 2-3 : Crystal lattices; from real space \mathcal{T}_{o} reciprocal lattice ·Ser slides for ^a summary of crystallattices : éclivre 2-3 : Crystal lattices; from real sp
caprocal lattice
Sec slides for a summary of crystal le
Solid a crystal: Any structure that is made
from a well defined unit structure infinite up from a well defined unit structure infinitely repeated f ollowing a fixed geometrical rule (periodicity). Bravais Lattice : describes The periodic arrangement of The repeated unitsof ^a crystal ravais Lattice: describes The periodic arrangement.
of the repeated units of a crystal
BL: All points defined by $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_1$ $rac{1}{3}a$ h_1 , $u_2 u_3$ in Tegers $a_{1,2,3}$ = primitive atrice \cdot A - Translational symmetry * I rectors · infinite repetition (Nr 10²³, bulk properties are $index$ of surfaces) . A - Travalational symmetry
. infinite repetition (N ~ 10° , bulk properties are
independent of surfaces)
. Each lattice point can boone a simple or complex
structural unit at each latice point ratio set of atoms.
Dassis 1 atom sel g atoms, ructural unit at each latice point rate set of atoms,
basis crystal structure = Branais lattice + basis

Def : Primitive Unit all associated with a lattice poi - -> a region in space associated with a lattice point I hat when lows both with all bellice rectors it will
Voids. · No unique choice uce 2D a Vinitell

space association

unique choic

unique choic

entre disc $\frac{1}{\sqrt{2}}$ U_{C} $\overrightarrow{h}:$ Volume of a primitive virit cell: σ = $\overrightarrow{a_1}$ $(\overrightarrow{a_2} \times \overrightarrow{a_3})$ Volume of a primitive visit cell: $\sigma = \vec{a}_1 \cdot (\vec{a}_2 \times \vec{a}_3)$
V_c = K independent of the choice of U.C.
On the of lattice points (1 cell on tains 1)
with all the left space with Volge 1 H of lattice points 1 cell contains 1 Def : Couventional unit cell : Filler The full space with Thanslations but can contain more than ¹ latticepoint

One can describe The fcc or Bcc laitice as ^a Simple Cobic (SC) ⁺ basis . This would be a conventional r. C
C $fcc \rightarrow sc + 4pTs$ $V=4\times Vp$ $BCC \rightarrow SC + Z P^{\top}S V = Z \times VP$ fcc # of points in SC all : 8 corners $(x-\frac{1}{3})$ +6 face(1) 4 ; $V_{\beta} = \frac{1}{4}a^3$ $BCC : H$ points: 8 torners (X^1) +1 = 2 $V_{\rho} = \frac{1}{z}a^3$ #of : Wigher-seltz Primitive all $\overline{}$ Region of space That is closer To a lattice point than any offer lat. cell
ser To a lattice
Point nearweigh. · 1. Draw lines from origin To all NN lattice points vint than any other lat. point nearneight.
1. Draw lines from origin To all NN lattice.
2. Draw 1 bisector planes
3. Smallest Vol enclosed > WS cill. \cdot 3. Sunallest Vol enclosed

Cryotal structure: Bravais lattice + Basis Pattice: 20 bravais / + 2 a Tour basis Stoney-Comb Triangular la Tice. du 1888 grapheur 20 Tr. augelar Pattice grapheur
houdjourte $X a_1 a_2 = 7/6$ Examples of crystal structures:
hcp: simple hexagonal lattice + basis of 2 $|a_{1}| = |a_{2}| = a$; $|a_{3}| = c$; for hard spheres $c/a = |a|/3$ FABAB... hcp = Ru, Cd, Re, Y, Hz, Cd

Examples of laTT; ces trou Trival bosis (different Bravais la Tire: fcc; $2a$ Tom basis $\int g(x)$ (0,0,0)
Bravais la Tire: fcc; $2a$ Tom basis $\int g(x)$ Seplace Zn & S by C=>Diamond 2. Na Cl
BL: fcc with basis $\int_0^h h \left(\rho, \rho, \rho \right)$
 $\left(\int_1^h (|z|)^2 \right) dx$ 3. C_sCl
BL = SC + baris (d (990)
Replace cl by $G \rightarrow Bcc$ $C_s : \frac{\alpha}{2}(1,1,1)$
Cordination # 10 8

Bej: (Atomic) Packing factor
APF = Nat = Vat Wat = # atoms in vivit cell
Vall Vat = 4 atoms in vivit cell Vuell prelated to FI $Ex : BCC$ a $\int \frac{\sqrt{2}}{x} \cdot \frac{d^{2}logomx}{dx^{2}} = 4r \Rightarrow x = \frac{4r}{\sqrt{3}}$ APF= $2.4/3 \cdot 15$
(4 $\sqrt{3}$)³ = $\frac{\sqrt{3}}{8}$ 0.62 = $\sqrt{3}$ 4 $HcP - 3a=2C$, $APF=0.74$ $Fcc \rightarrow HcP \rightarrow 0.74$ $SC \rightarrow 0.34$

Reciprocal LaTtice SET of PW vectors with the periodicity of Bravais lot
Reciprocol lettie $e^{i\kappa(\vec{R}+\vec{r})}$: $\vec{\kappa}\vec{r}$ = 1
 $\vec{R}\cdot\vec{k}$ = 2nn
 $\vec{R}\cdot\vec{k}$ = 2nn
 ω condition for \vec{k}
a R. 2. direct lattice Th: The R.L is a bravais la Tice ->D. L (direct la Mia) àc + i=1, 2, 3 BL (acciprocal la Tire) bi, i=1,2,3 $\left(\overrightarrow{b}: \overrightarrow{a} = z\eta \int c_j\right)$ $b_{i} = 2\pi \frac{a_{j} \times a_{n}}{a_{i} \cdot (a_{j} \times a_{k})}$ for $j \times i$ any vector in the R. L can be written us
 $K = k_1 b_1 + k_2 b_2 + k_3 b_3$, $h_1, h_2 k_3$ integers

becouvre $\vec{k}\cdot\vec{R} = zn(k,n+k_1n_2+k_3n_3)$

integer Th: The reciprocal of The Reciprocal lottice in The Examples:
1. C. L => Trivial, The reciprocalished $b_1 = \frac{2\pi}{a} (1, 0, 0)$; $b_2 = \frac{2\pi}{a} (0, 1, 0)$ $b_3 = \frac{2\pi}{a} (0, 0, 1)$ 2-FCC: Rl is a BCC with $a = \frac{4n}{a}$ (a=a_{cubic}) $a_{1}=\frac{a}{2}(0,1)$; $a_{2}=\frac{a}{2}(1,0,1)$; $a_{3}=\frac{a}{2}(1,1,0)$ $b_1 = 2\pi \frac{a^2/4}{a^3/4}$ (-1,1,1) = $\frac{2\pi}{a}$ (-1,1,1) $\frac{4\pi}{a}$ $\frac{6}{a}$ bc
 $b_2 = \frac{2\pi}{a}$ (1,-1,1) $\frac{1}{3}$ = $\frac{2\pi}{a}$ (1,1,-1) $\frac{4\pi}{a}$ $\frac{a}{a}$ $\frac{6}{a}$ $\frac{1}{a}$ $\frac{6}{a}$ $\frac{1}{a}$ $\frac{6}{a}$ $\frac{1}{$

 $4:RC$ of lexagonal fattice is a H. 20 rotated by 30° $TL: V_A = V_0$ of reigncal cell= $\frac{(2\pi)}{V_P}$ (obvious!) Def : First Brillorim zone ⁼ Wigner-Seitz primitive cell of the Reciprocal lattice \rightarrow Hence 15 BZ of FCC = wigner-seitz cell of BCC x rue recipt
between 15 B. * partice planes 2 Miller Indices · The BL can also be seen or constructed from a family of lattice planes => setof parallel & equally
spaced planes which together contain all the points in The lattice. The choice of planes family is not unique $(b$ ut itis finite!) fan
spa
latt,
(bol
Th
norm If there is a family of (lattice) places, with spacing d and normal rue is a family of (la Tira) planes, with
Then $(K = Zn \frac{n}{d})$ is a R.L.V,
direction. $d = \frac{1}{\sqrt{d}}$ spacing d and normal n , Then κ = 2 $n\frac{n}{d}$ is a
along The n direction. $\frac{d}{d}$ is a \Rightarrow $K =$ $\frac{1}{2\pi h}$ = $\frac{1}{2\pi h}$ = $\frac{1}{2\pi h}$, where $\frac{1}{2\pi h}$, where $\frac{1}{2\pi h}$ have us iv, and the sh

-> Exercise : prove This Silve converse of This Theorem : for any \vec{h} (RLV) There is a family of planes for any K (RLV) livere is a family of plane
Claritice planes) \perp K. If h is The shortest vector along the Fi direction (K= Elib., line common Then The spacing between planes is $d = zn$ present $=$ $\frac{27}{K}$ factor) \Rightarrow equations for These planes: $\vec{k} \cdot \vec{r} = 211 \text{ N} \cdot \text{eV} \cdot \text{eV} \cdot \text{eV} \cdot \text{eV}$ $N = (-1)^{0}$ This 4 M= (-d...-1) |
;
/ Sexercise : prove This 4 Sévercise: pour Mis 7

Miller Indices of a Lattice plane A A We know that families of latice planes are associated We know that founties of lattice planes are associated plane are the coordinates of the shorterst R.L.V. 1 To a family of flances. The coordinates of the miller places are given in a boris of a specific set of primitive reciprocal $vecbrs$. So a plane with
RZV $k = h b_1 + K b_2 + l b_3$ u in a barir of a specific set of primitive recipi

 $S_{\alpha\mu}$ a plane $A+K=\nsubseteq L$ \overline{b} ; \prime (li's no common factors) $\begin{array}{c|c|c|c}\n\mathcal{S} & \mathcal{S} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\
\mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\
\mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\
\mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal{A} \\
\mathcal{A} & \mathcal{A} & \mathcal{A} & \mathcal$ Le Bi / (et s no common factors)
The Miller indices for A= (l, lz) \overline{K} \overline{K} \overline{R} \overline{a}_{3} Sceametrical meaning $\frac{1}{\sqrt{a}}$ $\frac{1}{4}$ A intercepts the axisfail $\begin{array}{c} A \\ B \end{array}$ A intercepts the axis $\overrightarrow{a_1}$ $\frac{1}{a_1}$ $\frac{1}{2}$ \Rightarrow eq for A : $\vec{k} \cdot \vec{r}$ = constant $(\vec{k}(\vec{r},\vec{a_1})\cdot \vec{k}(x_2\vec{a_2})\cdot \vec{k}(x_3\vec{a_3})$ = 2n $\int_1^1 x_1 z_2 \cdot \vec{r}(x_2\vec{a_3})$ $2\pi\frac{V}{3}x_3$ l_1 x, = l_2 xz = l_3 x₃ = cons/ $Miller$ indices = (l, l_2) $\overrightarrow{R}(x\overrightarrow{a_1}) = \overrightarrow{K}(x_2\overrightarrow{a_2}) = \overrightarrow{K}(x_3\overrightarrow{a_3}) = \overrightarrow{2}n\overrightarrow{1}, \overrightarrow{x_1} = \overrightarrow{2}n\overrightarrow{2}$
 $\overrightarrow{K}(x_1 - \overrightarrow{1}x_2 - \overrightarrow{1}x_3 - \cos \overrightarrow{1})$
 $\overrightarrow{M} \cdot \overrightarrow{M} = \overrightarrow{M} \cdot \overrightarrow{M} = \overrightarrow{M} \cdot \overrightarrow{M} = \$ x_2 , x_3 => where The plane intercepts the axis; Take $\frac{1}{x}$ $\begin{aligned} \mathcal{L}(\mathcal{L}) &= \mathcal{L}(\$ factor to obtain The smallest integers tow To: 10
Intercepts
factor To
Convention
- Voually Conventions To specify directions 1. - Varally (for cubic lattices) They are given WRT The intercepts the axis ; Take $\frac{1}{x}$, unitidate the hand factor to obtain the smallest integers $\frac{1}{x}$ conventions to specify directions .
1. Vovally (fr cubic lattices) They are given w RT the conventional vint cell $\frac{1}{2}$ intercepto (1, 0) $\frac{1}{2}$ Tutercepto (1, 1) α $inverse(1)$ $\begin{pmatrix} c & b & c \end{pmatrix}$ (ley are given WRT)
 $\begin{pmatrix} d & d \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 \end{pmatrix}$ Tulercepts (1, 1 $\bigg)$ $M^{L}(100)$ $M^{L}(10)$ $\left\langle \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right) \right\rangle$

p intercepts (990) ? =>we need to take a ¹¹place of the same family $e \times (1, -1, 0)$ or $(1, 1, 0)$ mx $(1, 1, 0)$ or $(1, 1)$ $\left(\sqrt{2}\right)$ Notations : Gloo) ^a lattice plane \int θ -1 σ) \equiv $\left(\sigma$ $\left(\sigma\right)$ $\left\{ \begin{array}{c} | & 00 \\ | & 00 \end{array} \right\}$ = (100), (010) eTc L 100] \equiv direction along as $[2 \times y] = always = 2$
 $[2 \times y] = -3 \text{divex}$ along $x \overline{a_1} + y \overline{a_2} + y \overline{a_3}$ $\langle 100 \rangle = [100 \, \text{J} \sqrt{100}] [010].$ Uren 2100 =
 5×42]
 5100
 7100
 7100
 7100 (for many Things) \int ex: clearage: wit crystal along a face; different faces have different cleavage energies which depend on The atomic density of the planer · Low indices planes (100) (111) (010) are relevant because They represent the more common clearage planes for certain

crysTolo (semiconductors specially) $GaAs(110)$ $S; (111)$ Which surface in the clearage surface depends on surface Ex : Cleanage energy of Biamond C-C boud strength ~ 5.8.10 19 J a = 3.57 A Which is The cleanage surface? $\begin{cases} (111) \rightarrow 111 = \frac{27}{a} \sqrt{3} \\ (100) \rightarrow 111 = \pi/a \end{cases}$
 $(111) \rightarrow 111 = \pi/a$ $d = \frac{2n}{|k|} = \frac{2n}{2n \cdot \sqrt{3}/a} = \frac{a}{\sqrt{3}}$ Surface dernity of lattice points = $\frac{106}{16} = \frac{4}{a_3} = 9$ (for fcc)
Surface dernity of Dondo $\sigma = \rho \cdot d = \frac{4}{\sqrt{3}} \frac{1}{a^2} = \frac{2.3}{a^2}$ (10) -> d= $\frac{a}{\sqrt{2}}$; $\frac{a}{\sqrt{2}}$ $\frac{2\sqrt{2}}{a^2}$ $\sim \frac{2\sqrt{2}}{a^2}$ (100) d= a σ = 4 So (11) is The surface with the lower demity of Bonds
 $E = \frac{4}{\sqrt{3}} \frac{1}{\alpha^{2}} * 5.8.10^{-19} J = 10.5 J/m^{2}$ (expone = 12 J/m²)