and the control of the ________ ______ <u> Albany a Communication and the Communication</u> P

 N otation : $G = A 2 V$ Nearly Free electrons NFE = Elib_{y with} $W_{h} = \frac{1}{6} C_{h-6} e^{i(k-6)\Gamma}$ $A \text{Bloch } WF$ These states satisfy Prove The : $NFE = \frac{Notation 6 = 42V}{G}$
 $VFE = \frac{1}{10}$ with
 $V(r, k) = \frac{1}{10}C_{k-G}e^{i(k-G)(r+R)}$, i.e.
 $P(r, k) = \frac{1}{10}C_{k-G}e^{i(k-G)(r+R)}$, i.e.
 $P(r, k) = \frac{1}{10}C_{k-G}e^{i(k-G)(r+R)}$, i.e.
 $P(r) = \frac{1}{10}C_{k-G}e^{i(k-G)(r+R)}$ equation of $e^{in\frac{1}{2}k^2 - 1/k^2}$ $peri$ odic potential $H =$ $2\pi^2 V^2 + V(r)$; $H V_n = E_n V_n$ $Z = \frac{1}{2m}$ $\frac{12}{2}$
 $\int \frac{12}{2}$ ($h-6$) 2 E_{κ} $C_{\kappa-6}$ + $E_{\kappa-6}$ $C_{\kappa-6}$ = 0 (1) $\sqrt{\frac{1}{2}}$ This is the eq. That we solve To compute The eigenality lier is the eg. The ->For Fixed K There are Gequations like (1) $m = # o)$ eigenstates = # 6's or plane waves in the $e = t$ of ⁱ Gr · Free : $U(c)$ = $\frac{1}{6}$ $\frac{1}{6}$ $\frac{6}{5}$ $\frac{1}{3}$ $\frac{6}{5}$ $\frac{1}{3}$ $\frac{6}{5}$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{$ Then $\left(1\right)$ => $\left(\frac{\hbar^{2}}{2m}(K-6)\right)^{2}-\varepsilon$ $C_{h-6}=0$

= C_{h-c} i (k-G) $\left[\frac{h^{2}}{2m}(\kappa-6)-\frac{2}{m}\kappa\right]+\frac{C}{G}V_{c}$

 $E(k-6) = \frac{h^{2}}{2m} (k-6)^{2}$ matic K-6=9 620 621 $6 - 2$ $\mathcal{E}(q) = \frac{h^2}{2m} q^2$ $\frac{161}{1}$ $6,50$ $-\frac{\pi}{\alpha}$ $\frac{1}{\pi/a}$ $G = 0 \frac{\hbar^{2} k^{2}}{2m}$ $h \in (0, \pi/\alpha)$
 $G = 1 (\pi/\alpha) \rightarrow \epsilon = \frac{\hbar^{2}(k - \pi/\alpha)}{2\pi n}$ -> This is The free election solution $\kappa \in (0, \eta/\alpha)$ Electrons per unit cel W K $\overline{\mathbf{x}}$

What happens if we have more than one Cx-0 for
which $C_{x-G}^{\circ} = E_{n-G}^{\circ}$ Note $E^{0}(kG) = \frac{\hbar^{2}(k-G)^{2}}{2m}$
Trae electron shition.

Nearly Free electrons

· What happens when the externalpotential

 $i \circ \rho$ eriodic, but \bigcirc week . We can solve our problem by applying perturbation th. To the $\begin{aligned} i_S & \text{periodic, but very week. We can solve}\\ \text{product by applying herTurbation th.}\\ \text{free } \epsilon & \text{approximation that}\\ \text{the still have:}\\ \left(\frac{1}{2m}(k-s)^2 \cdot \epsilon\right) & \text{for} \\ \left(\frac{1}{2m}(k-s)^2 \cdot \epsilon\right) & \text{for} \\ \text{in } \left[1 + \frac{1}{2m}(k-s)^2 \cdot \epsilon\right] & \text{for} \\ \text{in } \left[1 + \frac{1}{2m}(k-s)^2 \cdot \epsilon\right] & \text{for} \\ \text{in } \left[1 + \frac{1}{2m}(k-s)^2 \$

· We still have : $i(k-6)$

 $\mathcal{G}(\mathcal{U})=\begin{matrix} \mathcal{U}(\mathcal{U}) & \mathcal{U}(\math$

. We solved this for the energy, obtaining $\left[\frac{\hbar^{2}}{2m}(k-6)^{2}-\varepsilon\right]C_{n-6}+\sum_{G'}\int_{G-G'}C_{n-G'}=0$
We solved this for the euergy, obtaining
 $E_{g}=E_{g}^{2}=\frac{\hbar^{2}}{2m}q^{2}$ with $q=k-6$

The wave functions for each energy, when There is we wan puissans par each energy $\left(\begin{matrix}a&c\c'\end{matrix}\right)$ no degeneracy $i(k-6)$

- If There are degeneracies. Then $\frac{1}{4}$ will be a linear
combination of all 6's that have the same eigenvalue \rightarrow That is, The $|C_{k-s}|$ will be a set of size m, Let's de This, will vae perturbation Th, and the
notation as in Ziman (chapter 3).
 $V(r) \rightarrow$ Periodic potential $\rightarrow V(r) = \frac{1}{6}V_6e$ \cdot IK> -> ψ_{κ} cc) = $\frac{1}{\sqrt[n]{v}}$ C $E^{\circ}(u) \longrightarrow Free$ e energies = $\frac{h^{2}-h^{2}}{2m}$ 15 order perTurbation th. $\mathcal{E}(k)=\mathcal{E}_{k}^{'}+\langle k|V|k\rangle+\sum_{k'}\frac{|\langle k|V|k'\rangle|^{2}}{\mathcal{E}^{c}\mu\langle k'\rangle}+\mathcal{O}(V^{3})$ $\langle K|U|K'\rangle=\frac{1}{U}\int_{V}e^{-iK}(\epsilon V_{G}e^{i6\tau})e^{iK'\tau}d\tau$
= ϵV_{G} $\frac{1}{V}\int_{V}e^{i(G+K'-K)}r_{d\tau}=\epsilon V_{G}\int_{K,K'G}$ $CK(V|K)=\frac{C}{6}V_6S_{k,o}=V_6=o(S_{bg}defini$ Tion)

This gives us : $\left| \sqrt{\varepsilon} \right|^{-1}$ $\begin{aligned} \text{S} & \text{guc} \\ \text{E} & \text{guc} \end{aligned}$ $e^c(\kappa)$! $\begin{array}{c|c|c} & & & & 2 \\ \hline & & & & & & 2 \\ \hline & & & & & & 2 \\ \hline & & & & & & 2 \\ \hline & & & & & &$ $\sum_{n=0}^{\infty}$ $(\mu) - \mathcal{E}^{\circ}(\mu - 6)$ This expansion is valid if $|{\mathcal{E}}^{\circ}(\kappa)-{\mathcal{E}}^{\circ}(\kappa-6)| \gg |V_{G}|$ fx ⁱ. ^e in valid not near a degeneracy also V .
G - > also V => 9 for large 6 (The actual potential $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\mathcal{E}(h) = \mathcal{E}^{\circ}(k) +$ $\mathcal{C}(\mathcal{C})$ · Degeneracy condition \Rightarrow $|K|$ = $\begin{array}{l} |K-6| \longrightarrow \text{This is the Lave Coulification} \\ \Rightarrow \text{Bragg} \text{ different terms} \\ \end{array}$ $C(A) = e^{-\frac{1}{2}(k+1)}$
 $Degueracy condition
\n>115K-6] - This is the face Coulomb
\n
$$
R = 5k
$$
 lies on the perpendicular bisector
\n
$$
G = 5k
$$
 lies on the perpendicular bisector
\n
$$
T|sin perquabola c|b|ccc
$$$ Strago au fruition n° 100
Str lies on The perpendicular bis This parpendicular bisector definesThe zene boundaries

- >Perforative expansion fails near the zone boundaries K and K-6 are strongly coupled =>we need to find a linear combination of these two states that are decoupled linear combine Note: Valence e in crystals are diffracted by the crystal exactly the same as if they would be diffracted if they were incident with wave rector H from artside · $Simplest degree$ racy $(m=2)$ $(K>1/k-6)$ $E(k)$ - $E(K-6) \sim U_6$ Services in the second state of the second state
is not the second state of the state
of the same of the state
of the same of the same different
states in the water of the same of
the states of the same of the same
of the $\rightarrow \infty$ - > Find a solution wear the zone Boundary $\frac{1}{2}$
 $\left(\frac{h^{2}}{2m}(n\epsilon)^{2}-\varepsilon(k)\right)\frac{1}{n\epsilon}$ $E = \frac{1}{66}$ 676 -676 -67 -67 -67 -67 -67 -67 -67 -67 -67 -67 · Now we consider in our solution mixes states that only the 20 space spanned by $|k\rangle$ and differ by a RIV 1 K-6), we ignore the coupling to all other states (solution is ^a linear combination of incident& difracted (Bragg) states)

 $\left(\frac{\hbar^{2}}{2m}(h-6)-E(h)\right)C_{k-G}+\bigvee_{-6}C_{k}=0$ 6:0 $\left(\frac{\hbar^{2}}{2m}\kappa^{2}-E(k)\right)C_{k}+V_{G}C_{k-G}$ 5-0
 E_{F} $V_{s} = V_{s}$ => V_{is} real $(E_{\kappa-6}^{\circ}-E_{\kappa})C_{\kappa-6}+\sqrt{\kappa}_{G}C_{\kappa}=0$ $\left(\frac{\varepsilon^{o}}{h}-\varepsilon_{h}\right)$ $C_{h}+V_{G}$ $C_{h-S}=0$ $\begin{vmatrix} \varepsilon_{\kappa} - \varepsilon^{\circ}{}_{\kappa} & -V_{6} \\ -V_{6}^{*} & \varepsilon_{\kappa} - \varepsilon^{\circ}{}_{\kappa}{}_{6} \end{vmatrix} = 0$ $\mathcal{E}_{\mu}^{\pm}=\frac{1}{2}\left((\mathcal{E}_{\mu}^{\circ}+\mathcal{E}_{\kappa-\sigma}^{\circ})\pm\bigvee\left(\mathcal{E}_{\mu}^{\circ}-\mathcal{E}_{\kappa\cdot\sigma}^{\circ}\right)+4\big|\bigvee_{G}\big|^{2}\right)$ $\Psi^{\pm} = C_n^{\pm} e^{jkr} + C_{k-\epsilon}^{\pm} e^{j(k-\epsilon)}$

The Two states e^{ikr} and $e^{i(k-\epsilon)}$ are combined

into Two other states ψ^* and ψ^-

This is the dominant effect of a weak periodic potential $-$ Exact degeneracy $|K| = |K - G|$ $\mathcal{E}_{K}^{c} = \mathcal{E}_{K-G}^{o}$ $E_{\kappa}^{\frac{1}{2}} = E_{\kappa}^{\frac{1}{2}} + V_{G}$
 $+ H_{\kappa} \frac{dV_{\kappa}}{dV_{\kappa}} = 2 |V_{G}| \alpha (V_{\gamma})$ (15 order effect) Wave fouction coefficient? $(\varepsilon-\varepsilon_{\mu}^{\circ})C_{\mu}=V_{\sigma}C_{\mu-\sigma}\Leftrightarrow |V_{\sigma}|C_{\mu}=V_{\sigma}C_{\mu-\sigma};$ $(E - E_{n-G}^{\circ})C_{k-G} = V_{G}^{\circ}C_{k}$ $C_{k} = \frac{1}{2}$ $SingV_{G}C_{k-G}$ $V_{G}<0$ => V^{\dagger} = $C_{K}(e^{ikr}-e^{i(k-\epsilon)r})\frac{k}{r^{2}}\frac{1}{\sqrt{2}}(e^{i\frac{G}{2}r-i\frac{G}{2}r})$ $\Psi = \sqrt{z} \sin \frac{1}{z} 6r$; $\Psi = \sqrt{z} \cos \frac{1}{z} 6r$

 ψ -> e^- around atoms => S-like states (e^z < e^o) $y \rightarrow e$ aroua atoms sure six -> c^racoul atoms => S·like states
-> c^r in between atoms => p·like states (
All this can be earily generated for
thes
Saps are formed : f tip of it lies on a (2"s.) > charge densities · All this can be easily generated for n>2 degenerated · Gaps are formed if Tip of it lies on a Bragg plane Sperpendicular bisector \cdot μ s are formed ; \int T_{ip} of \vec{k} lies on a Broundicular bisector of σ) \sim $\frac{1}{100}$ is $\frac{1}{100}$ bisector of σ) \sim $\frac{1}{100}$ is σ Bragg planes, This is where gaps open!

Summary: Clet's review The NFE model in 1D)
(1) K away from BZ boundaries (Bragg planes) EK on Bragg planes (11) > K= Gn = n 27 = n $\frac{n}{a}$)
IK = | K-G | Two and only z degenerate states G_{z} G_{y} G_{z} G_{z 3 K very close To Gr. $E_{\mu} = \frac{1}{Z} [E_{\mu}^{o} + E_{\mu-G_{\mu}}^{o} + \sqrt{(E_{\mu}^{o} - E_{\mu-G_{\mu}}^{o})^{2} + 4|V_{\mu}|}]^{2}$

ECU) is a smooth function $15I$ BZ bands: Pieces of $E(K)$ in n'-Th BZ. Using The extended zone scheme, reduce (imfold) Them To 4st Brillowin zone and join smoothly , represents the with band in The reduced and join si · Reduced zone : each level is indexed with a t within the $15\overline{B2}$ ^e Extended Extended sone: emphasizes the continuity of $EC(k)$. It · 30 : ϵ Vs K is platted for free e along high symmetry directions in K space. There are highly degenerated bands. Not all degeneracies are broken by the prec c'involet, some remain. · Geometrical structure factor in monoatomic lattices with basis Geomet $U(\tau) \implies$ atomic potentials at the atomic positions repeated periodically

Basis of identical atoms at di $U(r) = \sum_{R} \sum_{j} \phi(r-R-d_j)$ $R = \overline{d_1}$ $U_6 = \frac{1}{V} \int_V dr \ e^{i6r}$
 $= \frac{1}{V} \int_V dr \ e^{i6r}$
 $= \oint_C dr d)$
 $= \oint_C dr d)$
 $= \oint_C d \vec{r}$
 $= \oint_C d \vec{r$ $V_{G}=\frac{1}{V}\left(\begin{matrix} 1\\ 0\end{matrix}\right)S_{G}^{*}$ $\phi_{6}=\int d^{3}r e^{-i\theta r}dr$ S = = c'est y
V = c'est y d'arc yu)
Geometrica) structure factor factor former tausform of the atomic So;} The Paris leads to a SCG) = 0 for some Bragg planes
Then the Fourier component of the periodic potential associated
With those planes is = 0 => The lowest order splitting disappears

Symmetry operations and EDL
-if a crystal is invariant under rotation $O_R = R_{d_{1am}}$ operator $O_R \Psi(c) = \Psi(R^{-1}r)$ $R = Rol$. matrix
 $R_2(G) = \begin{pmatrix} cos\theta & -sin\theta & O \\ sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $0_{R}H0_{R} = H$ $H0_{R} = 0_{R}H$ $O_{R}H\psi_{k}(\tau)=O_{R}\mathcal{E}_{K}\psi_{k}(\tau)$ $H[0_{R}\psi_{\mu}(r)]=\sum_{\kappa}\left[0_{R}\psi_{\kappa}(r)\right]$ => On 4k is also au cigeufonction, with the same
cigeurale (pm (R) = On (e) ikr in R⁻¹ c (R⁻¹) $R(R^{\prime\prime})=(RR^{\prime\prime})$
 $(AR^{\prime})=(RR^{\prime})$ = $Rn\tau$
 $(A\mu)(r)=e^{i(RR^{\prime})\cdot\vec{r}}$ $U_{\mu}(R^{\prime\prime}r)=0$
 ST

 $={}^{3}E(A\overrightarrow{k})=E(\overrightarrow{k})$; $E_{n}(R\overrightarrow{k})=E_{m}(\overrightarrow{n})$ with a properly chosen Theorem : E. $(R\vec{n})$ = En (R) if the crystal is invariant under Or O_k = relation, reflection, inversion, any point operation $\mathscr{E}_{n}(\overrightarrow{AR})=\overrightarrow{O_{A}}\cdot\overrightarrow{E}_{n}(\overrightarrow{n})=\overrightarrow{E}_{n}(\overrightarrow{n})$ $Theorem : \mathcal{E}_n(k)$ surfaces in the space hour The point nearen. En (K) surfaces in the space ho
symmetries of the crystal in real space. Examples \cdot inversion symmetry \mathcal{E}_n (μ) = \mathcal{E}_n (- κ) · $reflection$ about $y-z$: En (h_x , h_y , k_z): En (h_x , k_y) \bigcup · Time Reversal symmetry : O ignore spin => ψ_{κ} and ψ_{κ} are degenerate $\mathscr{E}(\kappa)$ = CCK) \gtrless if spin orbitinteraction is included => $\qquadpsi_{k+} \neq \psi_{k+}$ $Time$ reversal $=$ $5\mathcal{E}_{h4}$ = \mathcal{E}_{r4}

 $\begin{picture}(120,110) \put(0,0){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line(1,0){150}} \put(150,110){\line$ ·Translational symmetry : anolational symmetry:
Yé can be written as ψ , 6 a RL vector. $\mathcal{E}_{\bm{\mathsf{n}}}(\bm{\mathsf{k}})$ = $\mathcal{E}_{\bm{\mathsf{n}}}(\bm{\mathsf{k}})$ $\left(\begin{array}{c} 1 \ 6 \end{array}\right) \Rightarrow$ ψ_{n} = $\frac{1}{\pi}$ (k + 6) \Rightarrow $(2k)$ = $\mathcal{E}_n(k+\vec{6})$ => $\psi_{nn} = \psi_{n(k+\vec{6})}$
 $\mathcal{E}_n(\vec{k})$ is periodic in reciprocal space. Summery: En (n) Mas Translational Sym. En (x)= En (2+6) $\mathcal{E}_n(\vec{\kappa})$ has the point symmetry of the crysis