Lectures 8-9

Electrons in a periodic potential and NFE approximation: Band gaps, Bragg Planes
and Zone Edges



Bloch’s Theorem (review)

Form | Ui () = € i (),
Unk (X + R) = upi(x)

Form 2 Unk(x + R) = 67;]“ank(m)



Expand Bloch state in a plane-wave basis set

—

‘V/>=Zc(l;+éllz+é> where <r
G

Schradinger equation becomes

Matrix version of Schrodinger equation }
ay)=ey) (E+6f v(G-G,) ... v[6-6) clk
where g _ V(ézo_él) (E'l'.éz V(*z._én) and|1//>= Ck.
\V(én.—él) v(G,-6,) (Ef:,,)z ) clk

Qu Q)

units: Rydberg atomic units: h=2m=e?/2=1
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Crystal structures from
x-ray diffraction



Determination of crystal structure

* In 1913 W.H.and W. L. Bragg found crystalline gave characteristic
patterns of reflected x-rays.

e Assuming specular reflection off
lattice planes.

e The condition for constructive
interference becomes

2d sin B = nA

e This is known as the Bragg
condition




The Von Laue formulation

* Doesn’t assume specular reflection
* No sectioning by planes

* Rather, at each point on the Bravais lattice the incident ray is
allowed to be scattered in all directions



Von Laue Formulation

First, consider only two scatterers.

d cos 0

The path difference is then
dcosO@ +dcos© =d e (n-n),

Constructive interference is,

= 217 de(n-n’)=m\




Von Laue Formulation

* With an array of scatterers; one at each point of the
Bravais lattice

* The last slide must hold for each d that are Bravais
lattice vectors, so

Re(k-k)=2mm

or
ek k-k) =111

Compare to the definition for the reciprocal lattice!
The Laue condition - constructive interference will occur provided that
the change in wave vector, K = k™ - k, is a vector in the reciprocal lattice.



Elastic scattering: Both incident and scattered wave vectors have the same

magnitude.
Lets express it as a function of the incident vector

k| = K| =k
_;:C_?)—I—/;‘);
K| =|G+kl —k=|G+k /
2 =G24+ k24+2Gk — G2 +2Gk=0— G +2k =0 1, 1,
.G 1 O
k= = -G
G 2 - ,
, G k K

Which means that the component of the incident wave vector K along the
reciprocal lattice vector G must be |/2 G.

Q)1



Equivalence of Braggs and Von Laue Formulations:

The key is to notice that the scattering is elastic, therefore the specular reflection condition in
Bragg translates to the condition that the incident wave vector K along the reciprocal lattice
vector G (G=difference between incident and reflected wave vectors) must be |/2G.

A k inci\dent

n
141G . Go is the shortest RL
(1KI) plané % diffractedF] vector in the G direction.
k’
B

- 27T 27T
Go| = —3;G = —n

d d

, 27T 270 ,

2ksint = —n: k = > 2dsint = n\

d A



Planes normal to vectors G at their midpoint are zone boundary planes.
An x-ray beam in the crystal will be diffracted if it satisfy: k*(1/2 G)=((1/2 G)2
The diffracted beam beam will be in the direction k-G. The Brillouin construction

has all the wave vectors k that can be diffracted by the crystal.



Ewald Construction

Condition for constructive interference, K = k™ - k,1s a
vector of the reciprocal lattice.

Note this 1s the RECIPROCAL lattice



Back to the NFE model



| -dimensional NFE model

(a) k away from BZ boundaries

e(k) = ' (k) + O(V*)

(b) k on Bragg planes k|l =k — G,
k=G,/2=nb/2=nr/a

v e o b= =fk= k|,

(c) k near BZ boundaries
1

e (k) = 5(60(1{7) + eo(k — G) + \/(eo(k) + ek — G))? + 4|V5|?)



Truncate Schrodinger equation to 2 x 2
alternate view: do "degenerate perturbation theory” for
the case where two plane waves have nearly the same kinetic energy.

The determinant of these equations is a quadratic in &(k), with
soluti , : -
O g (k) = 31+ Sl £ V(G- SL P 4GS (3.17)

(noting that ¥ g = ¥ §). Thus, the states ¢*-* and ¢*®** are com-
/

bined into two other states, 1y~ and ¥—, with energy &+ and &~

energy
lowered /’
&(k)
"
D /. engr*gy
raised - -
P G Q
1

Fig. 38. iflectron energy in one dimension: reduced zone scheme.
Fig. 42. Discontinuity of energy contour at zone boundary.
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3D free electrons, folded into Ist BZ, FCC
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Conventional unit cell
(a cube with 2 atoms per cell)

¢o

Na: bcc lattice, reciprocal lattice fcc

In units of 2n/a
I =(0,0,0), »  Wigner-Seitz cell of fcc

H = (0,1,0),
N = (1/2,1/2,0)
P=(1,1,1) 1/2

Lu. |. Sham, phy 21 I A, UCSD
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Experimental Band Structure of Na

E. Jensen'®) and E. W. Plummer
Department of Physics and Laboratory for Research on the Structure of Matter,

University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 16 July 1985)

Normal-emission angle-resolved photoemission data from Na(l110) are presented.

Two

discrepancies between these data and the predictions of free-electron theory are observed. First,
the occupied-band width is 2.5 eV, while theory predicts 3.2 eV. Second, the bands near the Fermi
level appear to have been severely distorted, as could be produced by a charge-density wave orient-

ed normal to the surface.

ELECTRON ENERGY (eV)

CRYSTAL MOMENTUM k (A )

FIG. 1. Plot of the relevant free-electron bands along the
2. axis in Na. The solid arrow shows the center of the direct
transition at 26-eV photon energy. The shaded region illus-
trates the energy uncertainty in the final band due to the fi-
nite mean free path of the photoelectron, and the dashed ar-
rows show the effect that this has on the width of the ob-
served peak.
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FIG. 4. Measured dispersion of the Na band along the
normal X axis. The final bands are assumed to be nearly
free electron (see text).



Alkali metals (L1, Na, K, Rb, Cs)

£

kr = (3m2n)/3,
n=2/a’

kr = (3/4m)Y/3 (21 /a)
I'N = (2r/a)[(1/2)* + (1/2)*]"/2
kr = 0.877T'N

\  4i/a




A Near-|y Free-Electron Metal The Brillouin zone has N k-states.

Each can be occupied twice. Na
. A. Papaconsfnntop;_ﬁl;:g, Handbook has 1 atom/cell, 1 electron/atom,
E =

occupied states take only 3 the
2m ., » volume of the Brillouin zone.

ENERGY (Ry)
- . .. :

. Tat-Sang Choy's
Fermi surface data base

1/2
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A&M Chapter 9 problem 3

Consider the point W (kw=(2pi/a)(l,1/2,0) in the brillouin zone of the fcc
structure. Here three Bragg planes (200),(111),(11-1) meet, and accordingly
the free electron energies are degenerate when k=ky

The kinetic energy is the free electron energies,

he o, h? 27 2
Eg — _ka y EQ = zm(k a (1) 13 1)) )
hQ 271' ) h2 27]- 2
o= P e 1D 0= - 20,00

27

They are degenerate when k = kw = (1, %, 0) and equal to ey = %k%v
S0 in the region of k-space near W, the first-order energies are given by

the following eigenvalue equations,



T
(6 o sk—Ki)ck—Ki — Z UKj—Kick—Kj ) 1= 1) 2) ceey TN
j=1

For this case, m = 3, and K; = 27”"(1, 1,1),Ky = %”(1, 1,1) Kz = %“(2,0,0).
So the possible potential energy Uk, k; s,

Uk,-k, = Uk,—x, = Ugpa = Usgp = Us;
Uk,-x3s = Uky—k;, = Ui1n = U1 = Usy;
Uk,-k, = Uk,— Kk, = Uj11 = Uy11 = Ui = Uy;

Here we have use the symmetry of fcc structure.



8? — & U1 U1 U2 Ck

0
U e —¢ U Ui Ckw—K1 | _
0 —
U1 U2 Eq — €& Ul Ckw —Ko
0
U2 U1 Ul Eqg — € Ck,, — K3z

So the eigenvalues are determined by the following equation,

6(1)—6 U1 U1 U2
Ui ey—e U U,
Uj Us 68 —e Uy
U2 U1 U1 62 — £

In the above equation, using the fact that the kinetic energies are degenerate
at kw. We can simplify equation,



— (€W — & — UQ)Q[(8W — 5)2 -1 QUQ(EW — 5) -+ U22 — 4U12] =0

So we have solutions,

e =¢ew — U (twice); € =ew + Us £ 2Us;



Appendix: Xray
diffraction+atoms in
the basis



gogram gen_rholl

| Generates a 1D density of charge for a chain of atoms, whose
| charge density os represented as gaussians centered

I at the lattice points

I Then it calculates the fourier transform of this 1D charge

| density and writes the magnitude (sqrt(la”2+b"2|) into

| the file rhok,

implicit none Variables definition o :
dodlc?lliimcell Crystal Generation
real*3, dimension(:), allocatable :: rhor Océzatégat

real*8, dimension(:,:), allocatable :: atom
integer :: npoints | discrtization of the space
integer :: nat | total number unit cells
integer :: ncell | total number of basis atmos

do ip=(icell-1)*npoints, icell*npoints-1
rhor-(ip)=rhor(ip)+atom{ia,count)
count=count+1

integer ia, ip,icell, n, count, i Sgddo
real*8 :: a llattice parameter enggo o

real*8 :: pi

real*38, dimension(:), allocatable :: sigma
real*8 :: deltax | size of smallest distance
complex, dimension(:), allocatable :: rhok

opentunit=1,file="rhok,.dat', form='formatted')
open{unit=2,file="rhor.dat', form='formatted')

rhok=cmplx(rhor{:))

. n=size{rhok) Fast Fourier Transform
read(S,I) DpoiriLs call fourl(rhok,n,1)
read(S,*) hat do ip=0,n/2-1
:Z:ggg'*g ancell write(1,*) ip*(2,0%pi)/(real(ncell)*a),sqrt(real (rhok(modulolip,n) ) )**2+aimag(rhok (modulolip,n) ) )**2)
allocate(sigmalnat)) enddo

read(5,*) (sigma(i), i=1,nat) do ip=0,ncel l*npoints-1

|nput r‘eading write(2,*) ip*deltax, rhor(ip)

._ ) . enddo
pi=acos(-1.0d0) Allocation of memory

ldeltax=real (nat)*a/real (npoints)

deltax=a/real (npoints) g:giigi:t:g:ﬂgig
allocate({atom({nat,0:npoints-1)) Ciosegi;
allocate(rhor(0:ncel 1*npoints-1)) Glose
allocate(rhok({0:ncel 1*npoints-1)) erd

atom=0

rhor=0,0d0 Atom Generation

do ia=1l,nat
do ip=0,npoints-1
atom(ia,ip)=exp(-{ip*deltax-a*real(ia)/real (nat+1))**2/(2,0d0*sigmalia)**2))
! write(B,*) ip, atom{ia,ip)
enddo
enddo
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Structural Factor and Atomic Form Factor

X-Ray Scattering Amplitude is given by
>re(iK-R) 2 fi(K) e (iK- 1)

(j = index running over atoms in the basis)

The 2nd summation is called a structural factor (Sk) and fj(K)

IS an atomic form factor
Sk= 2 fi(K) exp (iK- rj

If atoms are identical then atomic form factors are independent of |,
and Sk reduces to a geometrical structural factor.



1. Body-Centered Cubic Considered as Simple Cubic with a Basis  Since the body-
centered cubic lattice is @ Bravais lattice, we know that Bragg reflections will occur
when the change in wave vector K is a vector of the reciprocal lattice. which is face-
centercd cubic. Sometimes, however, 1t is convenient to regard the bee lattice as a
simple cubic lattice generated by primitive vectors ag, a¥, and az, with a two-point
basis consisting of d; = 0 and d, = (@/2)(% + ¥ + Z). From this point of view the
reciprocal lattice is also simple cubic, with a cubic cell of side 27/a. However. there
will now be a structure factor Sy associated with each Bragg reflection. In the present
case, (6.13) gives

Sk =1+ exp[iK-alX + ¥ | )| (6.14)
A gencral vector in the simple cubic reciprocal lattice has the form

271

K = . (n,X - n,¥ + ma2), (6.15)

Substituting this into (6.14), we find a structure factor
SK — 1 T {?’n(’,1+"31'";1) = l o= (_l)nl tratng

(2, ny 4y 1 ony  even, (6.16)
10,y +oms+omy odd.

‘ Figure 6.11 . el
. . nracal lattice of side 2x/a
2 - Pomts in the \IHII!'J cubic recaprocal fattce o SiC !

. - L % .
‘ . $- | i B . for which the structure factor (6_16) vanishes, are thost

gy (white circles) that can be reached from the origin by
- ! ik o oy e ‘
. » - o+ of nenre<t-neighbor bonds
l ' . N ' moving along an odd number of neares neizhb
» N ~ . 4 . A m 1 S11835
* ‘ When sich sites are climnated, the remammg SIes
o b AL ) . \ o
! L : A\ ~anctitinge w.centered cubxe lattice
' _ ‘ . AKX | Yy (black circles) constitute a face-cen { .
‘ | ' ’ T with cubic cell of side 4x/a
| e
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|
ol
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A=D



2. Monatomic Diamond Lattice The monatomic diamond lattice (carbon, silicon,
germanium, or grey tin) is not a Bravais lattice and must be described as a lattice
with a basis. The underlying Bravais lattice 1s face-centered cubic, and the basis can
be taken to be d; = 0, d; = (@)K + ¥ + 2), where £, §, and Z, are along the cubic
axes and a is the side of the conventional cubic cell. The reciprocal lattice 15 body-
centered cubic with conventional cubic cell of side 4r/a. If we take as primitive

vecLors
heZgs1-n heZarr-n B=TEEI-D @D

then the structure factor (6.13) for K = b, 1s
S =1+ exp [*1.3("‘ + n; + 03)]

Iz n, + ny + ny twice an even number, | 618
=11 40 ny+ n+ n;zodd , '
0. ny + na 4 ny twice an odd number.

To interpret these conditions on L, geometrically, note that if we substitute (6.17)
into K = Iab,, we can write the general reciprocal lattice vector in the form

4=

= -; (V.x + v;y + V;i). (6'19)
o= % y
Vi = (nl + ny; + N3) - Nj, .Zl Vj = i(nl + ny + "3). (6.20)
J..'
Figure 6.12

Th¢ body-centered cubic lattice with cubic cell side
4r.z,-'a that 15 reciprocal to a face-centered cubic lattice
wn.th cubic cell side a. When the fee lattice 1s that under-
!ym.g the diamond structure, then the white circles
nt}dtca(c sites with zero structure factor. (The black
c1rc|c.-s are sites with structure factor 2, and the gray ones
are sites with structure factor 1 + i)




*\/ = volume of unit cell

*\/* = volume of reciprocal unit cell

\/ V * = ony (d = dimension, 1, 2, 3)
*Reciprocal of fcc is bcc and vice versa
*Reciprocal of hexagonal is hexagonal

[First] Brillouin zone=Wigner Seitz Cell of
the momentum (i.e. wave vector) space.



® 5
®
Tl __*
_ e | @
*Any plane containing at least & ‘/_: PPy
three non-colinear Bravais S g
Lattice points =Lattice Plane < & ’

*For a given BL and a LP, BL = family of LP

*Any family of lattice planes can be labeled by a
reciprocal lattice vector K, which is perpendicular
to the lattice planes. The minimum non-zero
length of K is given by 2rvd, where d is the
spacing between lattice planes.



Any lattice plane is a 2d Bravais Lattice,

characterized by two vectors, which we can call
a1 and aZ2.

Now, choose any vector connecting
a lattice point of a given lattice plane and

another point of the next lattice plane.Call this a3.
al,a2,a3 are primitive vectors.

Let b1,b2,b3 be their reciprocal primitive vectors.
By construction, b3 is perpendicular to our lattice
planes. This is because all 3 rlv are perpendicular to the 3 div.

Furthermore, b3-a3= 21r.

Since d is the lattice plane separation, b3-a3 = |b3|d, and thus
|Ib3| = 211/d. QED.



CHAPTER 3

Electronic energy bands

© Cambridge University Press 2016



(a)

Ey (b)

MarvinCohen_Fig.3.1
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One sharp N-fold
degenerate level

A band of energy levels
N-fold degenerate

Inverse lattice constant 1/a

MarvinCohen_Fig.3.6
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(a)

Real space (b) Reciprocal space
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(a) Real space (b) Reciprocal space
Na,

g2/ N,

=
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MarvinCohen_Fig.3.11
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