
PHY 555: Solid-state Physics I
Homework #5-6
Due: 12/08/2025

Homework is due by the end of the due date specified above. Late homework will be subject to 3 points
off per day past the deadline, please contact me if you anticipate an issue making the deadline.
It should be turned in via blackboard. For the conceptual and analytical parts, turn in a scan or picture of
your answers (please ensure that they are legible) or an electronic copy if done with, e.g., LATEX. For the
computational part, turn in your source code and a short description of your results (including plots). The
description can be separate (e.g., in LATEX or word), or combined (e.g., in a jupyter notebook). Let me know if
you are not sure about the format.

Conceptual

1. 5 points Explain what the one-electron approximation is and how Hartree-Fock and density-functional
theory go beyond it.

2. 5 points Compare and contrast Hartree-Fock and density-functional theory in terms of the following
aspects:

(a) General philosophy for addressing the many-electron problem.

(b) The resulting single-electron problem to solve.

(c) The physical interpretation of the auxiliary single-particle orbitals and eigenvalues.

Analytical

3. 20 points In class we discussed the Fermi energy EF and density of states (DOS) for the free-electron
gas in three dimensions.

(a) Determine the average energy per electron (in class denoted as E0/N) for the 1D and 2D free
electron gasses.

(b) Determine the DOS for the free-electron gas in one and two dimensions. Schematically plot the
energy dependence of the DOS.

(c) To leading order in T, what is the temperature dependence of the Fermi energy in the 1D free-
electron gas? What happens if we try to use the Sommerfeld expansion to linear order for the
T-dependence of the Fermi energy in 2D?

(d) Find the T dependence of EF for the 2D case (without using the Sommerfeld expansion) by
calculating

N = 2
(

L
2π

)2 ∫
f (E)d2k, (1)

relating N to EF(T = 0) and solving for EF(T). Show that the result is discontinuous at T = 0,
and hence the Sommerfeld expansion does not apply.

4. 25 points We have discussed plane waves and atomic orbitals for performing calculations of the
electronic structure of solids and materials. In addition, gaussians are another common basis set, and
useful for other calculations in solids. The benefit of gaussians as a basis set is that they are localized
functions, so do not require pseudopotentials like plane waves, and integrals are easier to calculate
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than atomic orbitals. For example, one of the useful property about gaussians is the gaussian product
theorem (GPT) that states that the product of two gaussians is also a gaussian, centered at the “center
of gravity” of the two original gaussians. I.e., for χa(r) = e−α(r−A)2

and χb(r) = e−β(r−B)2
,

χa(r)χb(r) = e−
αβ

α+β (A−B)2
e−(α+β)(r−P)2

(2)

where P = (αA + βB)/(α + β).

(a) Consider a basis set of gaussians of the form ϕi(r) = Aieαi |r−Ri |2 . Using the GPT [Eq. (2)], show
that we can calculate the overlap between gaussians, i.e., Sij =

∫
ϕi(r)ϕj(r)dr with the simple

relation

Sij = Ai Aje
−

αiαj
αi+αj

(Ri−Rj)
2
(

π

αi + αj

)3/2

(3)

Note that we neglect the complex conjugation since all gaussians considered here will be real.

(b) In general Coulomb matrix elements, for Vext and the two electron integrals, are tricky to cal-
culate. This is because we need to be careful integrating over divergences of the form 1/|r− r′|
when r = r′. With gaussians, there is an elegant way to evaluate these matrix elements, utiliz-
ing the integral transformation

1
|r − RC|

=
2√
π

∫ ∞

0
e−|r−RC |2t2

dt (4)

Consider a gaussian charge density ρi(r) = (αi/π)3/2 exp(−αi|r − Ri|2), which could corre-
spond to a basis function, or product of basis functions (both are gaussians!). Show using the
result of (a) that ρi(r) is normalized to unity. Then, using Eq. (4) and Eq. (2), show that the
electrostatic potential at point RC, i.e.,

Vi(RC) =
∫

ρi(r)
|r − RC|

dr (5)

can be written as

Vi(RC) =
1

|Ri − RC|
erf

(√
αi|Ri − RC|2

)
, (6)

where erf is the error function and we use atomic units throughout so me = e = h̄ = 1. Hint:
One way to proceed is to first perform the integral over r, and then make the change of variables
from t to u = t/

√
αi + t2; then relate the resulting expression to the integral definition of the

error function: erf(z) =
√

4
π

∫ z
0 e−τ2

dτ.

(c) Using the result of (b) and Eq. (2), show that an arbitrary Coulomb matrix element between
gaussians

Uijkl =
∫ ∫ ϕi(r1)ϕj(r1)ϕk(r2)ϕl(r2)

|r1 − r2|
dr1dr2 (7)

can be written as

Uijkl =
SijSkl

|Rij − Rkl |
erf

(√
ωijkl |Rij − Rkl |2

)
(8)

where Rij = (αiRi + αjRj)/((αi + αj) (similarly for Rkl) and ωijkl =
(αi+αj)(αk+αl)
αi+αj+αk+αl

.
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Computational

5. 20 points In this problem, we consider a simple diatomic molecule made up of a hydrogen atom
and a helium atom (H-He) with two electrons. We set the location of H at RH = (0, 0, 0) and He is
RHe = (1.5117, 0, 0) Bohr. We use a basis set made up of two Gaussians:

ϕ1(r) = 0.3696e−0.4166|r−RH|2 (9)

ϕ2(r) = 0.5881e−0.7739|r−RHe|2 (10)

We will neglect spin and use atomic units throughout so me = e = h̄ = 1.

(a) Calculate the kinetic energy matrix elements with the basis functions:

Tij =
∫

ϕi(r)
(
−1

2
∇2

)
ϕj(r)dr. (11)

(b) Use your results from problem 4 to calculate the matrix elements of the external potential

Vij = −
∫

ϕi(r)
ZH

|r − RH|
ϕj(r)dr −

∫
ϕi(r)

ZHe

|r − RHe|
ϕj(r)dr. (12)

(c) Use your results from problem 4 to calculate the Coulomb and exchange matrix elements

Uijkl =
∫ ∫ ϕi(r1)ϕj(r1)ϕk(r2)ϕl(r2)

|r1 − r2|
dr1dr2. (13)

(d) Calculate the nuclear-nuclear repulsion energy VN = ZHeZH/|RH − RHe|.

6. 20 points Now we have all of the information to solve for the energy of the molecule using Hartree-
Fock (HF). directly solving the HF equation is challenging, especially because of the exchange term,
which makes it an integro-differential equation. For “closed shell” systems where we can neglect
the spin part (as we do here), we can actually express the equation in a form much easier to solve:

FC = SCϵϵϵ. (14)

In this equation, S is the overlap matrix between basis functions discussed in problem 4(a); C is
the matrix of expansion coefficients for the basis elements, i.e., the wavefunctions solving the HF
equations will be given by is given by ψj = ∑i Cijϕi; and F is the Fock matrix with elements

Fij = Tij + Vij + ∑
kl

Pkl(Uijkl −
1
2

Uilkj) ≡ Tij + Vij + Gij, (15)

where Pkl are the elements of the 2 × 2 “charge density matrix.” They are related to the expansion
coefficient via

Pkl = 2
N/2

∑
i

CkiC∗
li, (16)

where N is the number of electrons in the system (in our case there will be two). It is called the
charge-density matrix because the total charge density of the system can be written as ρ(r) =

∑ij Pijϕi(r)ϕ∗
i (r). Perform the following steps to solve for the energy of the H-He molecule using

Hartree-Fock:

(a) Choose an initial guess for P (for example, all elements zero).
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(b) Calculate F using Eq. (15).

(c) Solve the generalized eigenvalue problem in Eq. (14). If you are using python, you can use
scipy.linalg.eigh, e.g., with the line:

epsilon, C = scipy.linalg.eigh(F, S, eigvals_only=False)

(d) Determine an updated P using C and Eq. (16).

(e) Calculate the energy via

E = ∑
ij

Pij

(
Fij −

1
2

Gij

)
+ VN . (17)

(f) Repeat steps (b)-(e) to get an updated guess of the energy. Continue cycling until the energy
changes by less than 10−5 Ha.
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