Born—-Oppenheimer (single-surface) and its TD breakdown
Part I: Single-surface BO from H = Hectron + Hion

Hamiltonian split. Write the full Hamiltonian as a sum of an electronic part (acts on r; depends
on R only as parameters) and an ionic part (acts on R):

H = Helectron(r; R) + HiOH(Rv {VA})>
Helectron(r; R) = Te + ‘/;e + ‘/;—ion(R)a

h2
Hion(R7 {VA}) = Tion + Vz‘on—ion(R)a Tion = - Z 2MA V%.
A

Product ansatz and electronic ground state. For each fixed R, define the electronic ground
state

Helectron(m R) (ﬁo(l‘; R) = EO(R) ¢0(I‘; R)v <¢0(R)‘¢0(R)>1‘ =1

Assume the total wavefunction is a single-surface product

¥(r,R) = x(R)¢o(r;R).

Action of Hgectron and Hion.  Since Hgjectron acts only on r,

<¢0|Helectron|\1j>r = EO(R) X(R)

The ion—ion potential multiplies the product:
<¢O|‘/ion—ion’qj>r — ion—ion(R) X(R)

The nuclear kinetic energy acts on both x and the R-dependence of ¢g; using V4 (x¢0) = (V4 X)¢o+
2(Vax) (Vago) + x(V4¢o) and defining the derivative couplings

DA(R) = (¢o|Vado)r,  Ta(R) = (¢0|Vi0)r,

one finds the ezxact single-surface nuclear equation

R

| VAx+2DaVax +7ax] + [Bo(R) + Viowion(R)] X(R) = Ex(R).

Uso(R)
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Born—Oppenheimer (leading order in 1/M). The terms proportional to D4 and 74 originate
from Tion acting on the R-dependence of ¢¢ and are O(1/My) (nonadiabatic couplings). Neglecting
them gives the standard BO nuclear equation on the BO surface Upo(R):

[ZZFL]\;AVi + Uso(R)|x(R) = Ex(R),  Upo(R)= Eo(R) + Vion-ion(R).
A




Part II: Why one electronic state is not exact (TD nonadiabatic couplings)

Born-Huang (multi-surface) expansion. Expand the total wavefunction in the full adiabatic
electronic basis:

\I/(I‘, Ra t) = Z Xn(Ra t) ¢n(r; R), Helectron(r; R) ¢n = En(R) ¢n

Insert into ih 0; ¥ = HV and project onto ¢,,. Defining the nonadiabatic derivative couplings

D;n(R) = (0n(R)Vadu(R))r,  Tinn(R) = (9n(R)[VAn(R))r,
one obtains the coupled nuclear equations

, h?
0 (R,1) = | = 3 53 VA + Bn(R) | xn (R, 1)
A

The off-diagonal terms (m # n) miz electronic channels: even if initially x,~¢ = 0, they generate
population in excited states during time evolution.

Adiabatic criterion (when single-surface BO is OK). Using Hellmann-Feynman for m # n,
D} = <¢m‘vgfelecg°“‘¢”>, so couplings grow when the electronic gap |E, — E,,| is small (avoided
crossings, conical intersections). A rough adiabaticity condition is that the mixing rate be small

compared to the gap:

R-dpn| < |En(R) = En(R)|/h,  dpmn=>_ Dj R,
A

so slow nuclear motion and large gaps suppress transitions. Otherwise, multi-surface dynamics is
necessary (Landau—Zener transitions provide a useful two-level estimate).

Bottom line. The single-surface product ¥ = x(R,t)¢o(r;R) is an approximation. In real
time evolution, the off-diagonal nonadiabatic couplings inevitably transfer amplitude to excited
electronic states unless the motion is perfectly adiabatic (heavy nuclei, slow motion, large gaps).
Near degeneracies (e.g., conical intersections) a multi-state treatment or a diabatic representation
is essential.



