
Born–Oppenheimer (single-surface) and its TD breakdown
Part I: Single-surface BO from H = Helectron +Hion

Hamiltonian split. Write the full Hamiltonian as a sum of an electronic part (acts on r; depends
on R only as parameters) and an ionic part (acts on R):

H = Helectron(r;R) +Hion(R, {∇A}),
Helectron(r;R) = Te + Vee + Ve-ion(R),

Hion(R, {∇A}) = Tion + Vion-ion(R), Tion = −
∑
A

ℏ2

2MA
∇2

A.

Product ansatz and electronic ground state. For each fixed R, define the electronic ground
state

Helectron(r;R)ϕ0(r;R) = E0(R)ϕ0(r;R), ⟨ϕ0(R)|ϕ0(R)⟩r = 1.

Assume the total wavefunction is a single-surface product

Ψ(r,R) = χ(R)ϕ0(r;R).

Action of Helectron and Hion. Since Helectron acts only on r,

⟨ϕ0|Helectron|Ψ⟩r = E0(R)χ(R).

The ion–ion potential multiplies the product:

⟨ϕ0|Vion-ion|Ψ⟩r = Vion-ion(R)χ(R).

The nuclear kinetic energy acts on both χ and theR-dependence of ϕ0; using∇2
A(χϕ0) = (∇2

Aχ)ϕ0+
2(∇Aχ)·(∇Aϕ0) + χ(∇2

Aϕ0) and defining the derivative couplings

DA(R) ≡ ⟨ϕ0|∇Aϕ0⟩r, τA(R) ≡ ⟨ϕ0|∇2
Aϕ0⟩r,

one finds the exact single-surface nuclear equation

−
∑
A

ℏ2

2MA

[
∇2

Aχ+ 2DA ·∇Aχ+ τA χ
]
+

[
E0(R) + Vion-ion(R)

]︸ ︷︷ ︸
UBO(R)

χ(R) = E χ(R).

Born–Oppenheimer (leading order in 1/M). The terms proportional to DA and τA originate
from Tion acting on the R-dependence of ϕ0 and are O(1/MA) (nonadiabatic couplings). Neglecting
them gives the standard BO nuclear equation on the BO surface UBO(R):

[
−
∑
A

ℏ2

2MA
∇2

A + UBO(R)
]
χ(R) = E χ(R), UBO(R) ≡ E0(R) + Vion-ion(R).
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Part II: Why one electronic state is not exact (TD nonadiabatic couplings)

Born–Huang (multi-surface) expansion. Expand the total wavefunction in the full adiabatic
electronic basis:

Ψ(r,R, t) =
∑
n

χn(R, t)ϕn(r;R), Helectron(r;R)ϕn = En(R)ϕn.

Insert into iℏ ∂tΨ = HΨ and project onto ϕm. Defining the nonadiabatic derivative couplings

DA
mn(R) ≡ ⟨ϕm(R)|∇Aϕn(R)⟩r, τAmn(R) ≡ ⟨ϕm(R)|∇2

Aϕn(R)⟩r,

one obtains the coupled nuclear equations

iℏ ∂tχm(R, t) =
[
−
∑
A

ℏ2

2MA
∇2

A + Em(R)
]
χm(R, t)

−
∑
n

∑
A

ℏ2

MA
DA

mn(R)·∇Aχn(R, t) −
∑
n

∑
A

ℏ2

2MA
τAmn(R)χn(R, t).

The off-diagonal terms (m ̸= n) mix electronic channels: even if initially χn>0 = 0, they generate
population in excited states during time evolution.

Adiabatic criterion (when single-surface BO is OK). Using Hellmann–Feynman for m ̸= n,

DA
mn = ⟨ϕm|∇AHelectron|ϕn⟩

En−Em
, so couplings grow when the electronic gap |En − Em| is small (avoided

crossings, conical intersections). A rough adiabaticity condition is that the mixing rate be small
compared to the gap:∣∣Ṙ·dmn

∣∣ ≪ |En(R)− Em(R)|/ℏ, dmn ≡
∑
A

DA
mn ṘA,

so slow nuclear motion and large gaps suppress transitions. Otherwise, multi-surface dynamics is
necessary (Landau–Zener transitions provide a useful two-level estimate).

Bottom line. The single-surface product Ψ = χ(R, t)ϕ0(r;R) is an approximation. In real
time evolution, the off-diagonal nonadiabatic couplings inevitably transfer amplitude to excited
electronic states unless the motion is perfectly adiabatic (heavy nuclei, slow motion, large gaps).
Near degeneracies (e.g., conical intersections) a multi-state treatment or a diabatic representation
is essential.
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