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From Real-Space to k-Space Hamiltonian
Real-space Hamiltonian:

Ĥ =
p̂2

2m
+ V (r), V (r + R) = V (r).

Bloch form of the wavefunction:

ψnk(r) = e ik·r unk(r), unk(r + R) = unk(r).

Substitute into Ĥψ = Eψ and factor out e ik·r:

H(k) = e−ik·r Ĥ e ik·r =
(p̂+ ℏk)2

2m
+ V (r) .

▶ H(k) acts only on periodic functions unk(r).

▶ It is not a Fourier transform, but a unitary transformation shifting momentum:
p̂ → p̂+ ℏk.

▶ Solving H(k)unk = εn(k)unk gives band energies εn(k).



Bloch States and Crystal Momentum

For a periodic potential V (r + R) = V (r):

ψnk(r) = e ik·r unk(r), unk(r + R) = unk(r)

Define the k-space Hamiltonian:

H(k) = e−ik·rHe ik·r =
(p̂+ ℏk)2

2m
+ V (r).

Crystal momentum: ℏk labels irreducible representations of the translation group.



Expectation Value of the Momentum Operator
Apply the Hellmann–Feynman theorem to H(k):

∂εn(k)

∂k
= ⟨unk|

∂H(k)

∂k
|unk⟩

=
ℏ
m

⟨unk|p̂+ ℏk|unk⟩ .

Since p̂ψnk = e ik·r(p̂+ ℏk)unk,

Result

⟨p̂⟩nk =
m

ℏ
∇kεn(k) .

The group velocity is

vn(k) =
1

ℏ
∇kεn(k) , ⟨p̂⟩ = mvn.



Electron Dynamics Under a Constant Electric Field

For a uniform field E, the semiclassical equations of motion are:

Semiclassical Equations

ℏk̇ = −eE,

ṙ =
1

ℏ
∇kεn(k).

Therefore,

k(t) = k0 −
eE

ℏ
t, ⟨p̂⟩ (t) = mvn[k(t)].

ℏk is the crystal momentum, not a true mechanical momentum, but determines the

velocity and band transport.



Bloch Oscillations in 1D
Tight-binding dispersion:

ε(k) = ε0 − 2γ cos(ka).

Then,

k(t) = k0 −
eE

ℏ
t,

v(t) =
1

ℏ
∂ε

∂k
=

2γa

ℏ
sin(ka).

Bloch Frequency

ωB =
eEa

ℏ

The motion is periodic with period TB = 2π/ωB ; real oscillations are damped by
scattering or interband tunneling.



Visualization: Bloch Oscillations

Figure: Example of velocity v(t) = 2γa
ℏ sin(k(t)a) for γ = 1 eV, a = 4 Å, and E = 107 V/m.

The motion is periodic with ωB = eEa/ℏ.

Use this to illustrate how electrons accelerate and Bragg-reflect at the Brillouin zone
edges.



Limitations of the Semiclassical Picture

▶ The semiclassical equations track only a narrow wavepacket centered at k(t).

▶ The field −eE · r actually mixes Bloch states with different k because it breaks
translation symmetry.

▶ In the full Bloch basis:

⟨nk|(−eE · r)|mk′⟩ ∝ ieE · ∇kδ(k− k′) + eE · Anm(k)δ(k− k′),

showing explicit coupling between nearby k’s.

▶ The semiclassical approximation keeps only the center of mass motion:
ℏk̇ = −eE.

▶ Strong fields or long times cause k-mixing beyond this picture (Zener tunneling,
Wannier–Stark localization).



Interband Dynamics: General Equations

Expand the wavefunction in cell-periodic Bloch states:

|Ψ(t)⟩ =
∑
n

cn(t)e
i
ℏ [ℏk(t)·r−

∫ t εn(k(t′))dt′]
∣∣unk(t)〉 ,

with ℏk̇ = −eE. The coefficients evolve as:

iℏċn(t) = −eE ·
∑
m

Anm(k(t))cm(t),

where Anm(k) = i⟨unk|∇kumk⟩ is the Berry connection.

▶ Diagonal Ann: geometric (Berry) phase.

▶ Off-diagonal An ̸=m: interband coupling.

▶ Thus E drives transitions between bands through these matrix elements.



Landau–Zener Transitions and Breakdown

At an avoided crossing between bands separated by a gap ∆(k∗):

Landau–Zener Probability

PLZ ≈ exp

[
− π∆2

2ℏ|eE ·∆v|

]
, ∆v = vc − vv .

▶ Weak field ⇒ PLZ ≪ 1: adiabatic motion within a band.

▶ Strong field ⇒ Zener tunneling v → c , damping Bloch oscillations.

▶ Leads to Wannier–Stark localization and ultimately breakdown at high E .

Example: In semiconductors, interband tunneling sets the threshold for dielectric
breakdown.



Berry Curvature and Topology

The Berry curvature for band n:

Ωn(k) = ∇k × Ann(k), Ann = i⟨unk|∇kunk⟩.

Acts like a magnetic field in k-space.

▶ Integrating Ωn over the Brillouin zone gives the Chern number:

Cn =
1

2π

∫
BZ

Ωn,z(k) d
2k .

▶ Cn = 0 ⇒ trivial band; Cn ̸= 0 ⇒ topologically nontrivial.

▶ Nontrivial topology implies obstruction to defining a global smooth phase.



Anomalous Velocity and Topological Bloch Oscillations

Semiclassical equations of motion including Berry curvature:

ṙ =
1

ℏ
∇kεn(k)−

e

ℏ
E×Ωn(k) .

▶ The second term is the anomalous velocity.

▶ In topological bands, it produces a transverse drift during Bloch oscillations.

▶ Over one Bloch period, the displacement is:

∆ranom ∼ e

ℏ

∫ TB

0
E×Ωn(k(t)) dt.

▶ If the Berry curvature has nonzero winding (Chern number), this drift is quantized.



Topological Classification and Bloch Oscillation Behavior

Case Berry curvature Topology Bloch oscillations

Trivial insulator local Ω(k) may exist, net zero smooth Bloch phases possible purely longitudinal oscillations
Chern insulator / QHE nonzero Chern number topologically nontrivial quantized transverse drift per period
TR-symmetric topological insulator Ω(k) antisymmetric between spins spin Chern number ̸= 0 opposite drifts for opposite spins (spin current)

Topological bands thus yield geometric Bloch oscillations: motion encodes Berry
phase structure.



Remarks

▶ The derivation assumes a single isolated band and slowly varying fields (adiabatic
evolution).

▶ For multiple bands, interband transitions (Landau–Zener tunneling) can occur.

▶ Including Berry curvature adds an anomalous velocity term − e
ℏE×Ωn.

▶ Topologically nontrivial bands lead to quantized lateral motion or spin currents.
γ, a, and E .


