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From Real-Space to k-Space Hamiltonian
Real-space Hamiltonian:

H= L +V(r), V(r+R)=V(r)
- 2m ’ - '

Bloch form of the wavefunction:
¢nk(r) = eik~r Unk(")y Unk(r + R) = Unk(r)-

Substitute into Hiy = Et) and factor out e’*":

(P + hk)?

H(k) = —I'k'l’I:I ik-r:
(k)=e e oy

+ V(r)|

» H(k) acts only on periodic functions upk(r).

» It is not a Fourier transform, but a unitary transformation shifting momentum:
p — p+ 7k.

» Solving H(k)upk = en(k)unk gives band energies e, (k).



Bloch States and Crystal Momentum

For a periodic potential V/(r + R) = V/(r):
¢nk(r) = e'kr Unk(r)a Unk(r + R) = Unk(r)
Define the k-space Hamiltonian:

(P + hk)?

H(K) = —ik-rH ik~r:
(k)=e e om

+ V(r).

Crystal momentum: 7k labels irreducible representations of the translation group.



Expectation Value of the Momentum Operator
Apply the Hellmann-Feynman theorem to H(k):

P _ {200
%<Unk|P+ﬁk!Unk>-
Since puink = €*"(p + k) upk,
Result
(B) e = 7 Vien(k)

The group velocity is




Electron Dynamics Under a Constant Electric Field

For a uniform field E, the semiclassical equations of motion are:

Semiclassical Equations

hk = —eE,
f = 19een(k)
= A kEn .
Therefore,
eE .
k(t) =ko— -t (B) (t) = mva[k(t)].

hk is the crystal momentum, not a true mechanical momentum, but determines the

velocity and band transport.



Bloch Oscillations in 1D
Tight-binding dispersion:
e(k) = g — 2y cos(ka).

Then,

eE
K(t) = ko — =
(t) = ko — —+-t,
10 2vya .
V(t) = ﬁa = 7 Sln(ka).

Bloch Frequency

The motion is periodic with period Tg = 27 /wg; real oscillations are damped by
scattering or interband tunneling.



Visualization: Bloch Oscillations

Bloch oscillations: wg = eEa/h = 6.08e+12 rad/s
1e6 y=1.0eV,a=4.0A E=1.0e+07 V/m, Tg = 1.034 ps
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Figure: Example of velocity v(t) = 2%sin(k(t)a) fory=1eV,a=4A and E=10" V/m.
The motion is periodic with wg = eEa/h.



Limitations of the Semiclassical Picture

» The semiclassical equations track only a narrow wavepacket centered at k(t).

» The field —eE - r actually mixes Bloch states with different k because it breaks
translation symmetry.

» In the full Bloch basis:
(nk|(—€E - r)|mk’) o ieE - Vi d(k — k') + €eE - A,,(k)d(k — k'),

showing explicit coupling between nearby k's.

> The semiclassical approximation keeps only the center of mass motion:
hk = —eE.

» Strong fields or long times cause k-mixing beyond this picture (Zener tunneling,
Wannier=Stark localization).



Interband Dynamics: General Equations

Expand the wavefunction in cell-periodic Bloch states:

W(t) = 3 ca(t)erlkOT enleteNde] |y )
with ik = —eE. The coefficients evolve as:
IhCn = —cE- ZAnm Cm )

where Apn(k) = i{Uunk|Vkumk) is the Berry connection.
» Diagonal A,,: geometric (Berry) phase.
» Off-diagonal A,p: interband coupling.

» Thus E drives transitions between bands through these matrix elements.



Landau—Zener Transitions and Breakdown

At an avoided crossing between bands separated by a gap A(k.):
Landau—Zener Probability

A2

™2 Av=ve—w,.
2h|eE-Av\]’ Ve Ve Wy

Prz =~ exp [—
» Weak field = P,z < 1: adiabatic motion within a band.
» Strong field = Zener tunneling v — ¢, damping Bloch oscillations.

» Leads to Wannier—Stark localization and ultimately breakdown at high E.

Example: In semiconductors, interband tunneling sets the threshold for dielectric
breakdown.



Berry Curvature and Topology

The Berry curvature for band n:
Qn(k) = Vk X A,,,,(k), Ann = i<unk’vkunk>.

Acts like a magnetic field in k-space.

» Integrating €, over the Brillouin zone gives the Chern number:

1 2
C, = 27r/sz Q. (k) dk.

» C, = 0= trivial band; C, # 0 = topologically nontrivial.

» Nontrivial topology implies obstruction to defining a global smooth phase.



Anomalous Velocity and Topological Bloch Oscillations

Semiclassical equations of motion including Berry curvature:

- %Vken(k) ~CEx 0,0

» The second term is the anomalous velocity.
» In topological bands, it produces a transverse drift during Bloch oscillations.

» Over one Bloch period, the displacement is:

Ts
Abaom ~ ;/ E x ©2,(k(t)) dt.
0

» If the Berry curvature has nonzero winding (Chern number), this drift is quantized.



Topological Classification and Bloch Oscillation Behavior

Case Berry curvature Topology Bloch oscillations

Trivial insulator local Q(k) may exist, net zero smooth Bloch phases possible purely longitudinal oscillations

Chern insulator / QHE nonzero Chern number topologically nontrivial quantized transverse drift per period
TR-symmetric topological insulator (k) antisymmetric between spins  spin Chern number # 0 opposite drifts for opposite spins (spin current)

Topological bands thus yield geometric Bloch oscillations: motion encodes Berry
phase structure.



Remarks

» The derivation assumes a single isolated band and slowly varying fields (adiabatic
evolution).

» For multiple bands, interband transitions (Landau—Zener tunneling) can occur.

v

Including Berry curvature adds an anomalous velocity term —ZE x .

» Topologically nontrivial bands lead to quantized lateral motion or spin currents.
v, a, and E.



