
Bloch’s Theorem in 1D and the Kronig–Penney Model

1. Periodic potentials and Fourier expansion

We consider a 1D crystal with a periodic potential

V (x+ a) = V (x). (1)

It can be expanded as a Fourier series over reciprocal lattice vectors G = 2πn/a:

V (x) =
∑
G

VGe
iGx. (2)

2. Action of H on a plane wave

For a free electron, eigenstates are plane waves eikx. When acted on by H = − ℏ2
2m
∂2x + V (x),

the kinetic term preserves k, while the potential term couples it to plane waves with k +G.
Thus,

Heikx ∈ span{ei(k+G)x}, (3)

which is a closed subspace Sk.

3. Subspaces and the Brillouin zone

Each k defines a distinct subspace Sk. However, k and k + G belong to the same subspace,
so it suffices to take k within the range −π/a ≤ k ≤ π/a. This interval defines the first
Brillouin zone (1BZ). Any wavevector can be written as k1BZ +G.

4. Bloch form of eigenstates

Because H is block-diagonal in these subspaces, its eigenfunctions can be written as linear
combinations of plane waves ei(k+G)x. Factoring out eikx leads to Bloch’s theorem:

ψk(x) = eikxuk(x), uk(x+ a) = uk(x). (4)

Thus eigenstates are travelling waves modulated by a periodic function.

5. Symmetry in 1D

In 1D, the Schr”odinger equation is a second-order ODE, so for each energy there are only
two independent solutions. Together with time-reversal/inversion symmetry,

E(k) = E(−k), (5)

this implies that there can be no additional degeneracy at a fixed k. Therefore, in 1D bands
cannot cross.
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6. Location of extrema

Because E(k) = E(−k), the derivative dE/dk vanishes at k = 0 (the Γ point). At the zone
edge k = ±π/a, Bragg reflection couples ±k states into standing waves with zero group
velocity. Therefore extrema occur only at Γ and at the zone boundary.

7. Free electron bands and folding

If V = 0, the dispersion is free-electron-like:

E(k) =
ℏ2k2

2m
. (6)

Folding into the first Brillouin zone produces overlapping parabolas. At the zone boundary,
different plane waves become degenerate.

8. Periodic potential and gap opening

A periodic potential couples states differing by reciprocal lattice vectors. At the zone bound-
ary, plane waves e±iπx/a are degenerate. The potential couples them, leading to standing
waves:

cos(πx/a), sin(πx/a). (7)

One has density maxima on the ions, the other has nodes on the ions, so their energies split.
This opens a band gap.

9. Two-level picture at the boundary

Near k = π/a, the subspace spanned by eiπx/a and e−iπx/a leads to a 2× 2 Hamiltonian

H =

(
E0 VG
V ∗
G E0

)
, (8)

where E0 = ℏ2(π/a)2/2m is the free-electron energy and VG is the Fourier component of the
potential. Diagonalization yields

E = E0 ± |VG|, (9)

so a gap 2|VG| opens at the zone boundary.

10. Finite system size and allowed k values

So far we treated the system as infinite, which makes k continuous in the first Brillouin zone.
In a real sample of finite length L, there are only

M =
L

a
(10)

unit cells.
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Imposing Born–von Karman boundary conditions, ψ(x+L) = ψ(x), restricts the allowed
values of k to

k =
2πm

L
, m = −M

2
, . . . ,+

M

2
− 1. (11)

Thus within the first Brillouin zone [−π/a, π/a] there are exactly M distinct k-points,
equal to the number of unit cells. Each energy band therefore contains M states.

This connects the crystal momentum picture to counting of quantum states: the number
of states per band equals the number of unit cells in the crystal.

11. Kronig–Penney model

A concrete solvable model is the 1D Kronig–Penney potential: a periodic array of rectangular
barriers (well width w, barrier width b, height V0). The dispersion relation is

cos(ka) = cos(qw) cosh(βb) +
β2 − q2

2qβ
sin(qw) sinh(βb), (12)

with a = w + b, q =
√
2mE/ℏ, and β =

√
2m(V0 − E)/ℏ.

This transcendental equation defines the allowed energies E(k). Gaps appear naturally
at the Brillouin zone edges, and the dependence on w, b, and V0 provides clear physical
intuition: larger barriers or wider spacing flatten bands and widen gaps.

—
Summary: Bloch’s theorem ensures eigenstates are plane waves modulated by a periodic

function. In 1D, symmetry constrains bands to be even functions of k, forbids crossings, and
places extrema only at Γ and zone edges. The periodic potential opens gaps at the zone
boundaries, which can be seen explicitly in both the simple two-level picture and the exactly
solvable Kronig–Penney model. For a finite crystal of length L, the number of allowed k
values per band equals the number of unit cells M = L/a.
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