Bloch’s Theorem in 1D and the Kronig—Penney Model

1. Periodic potentials and Fourier expansion

We consider a 1D crystal with a periodic potential
V(z+a)=V(zx). (1)

It can be expanded as a Fourier series over reciprocal lattice vectors G = 2mn/a:

V(z) = Z Vaeloe. (2)
G

2. Action of H on a plane wave

For a free electron, eigenstates are plane waves e’**. When acted on by H = —%83 + V(z),
the kinetic term preserves k, while the potential term couples it to plane waves with k£ + G.
Thus,

He*® e span{e’*t6)2), (3)

which is a closed subspace Sj.

3. Subspaces and the Brillouin zone

Each k defines a distinct subspace Sx. However, k and k 4 G belong to the same subspace,
so it suffices to take k£ within the range —7/a < k < m/a. This interval defines the first
Brillouin zone (1BZ). Any wavevector can be written as kipz + G.

4. Bloch form of eigenstates

Because H is block-diagonal in these subspaces, its eigenfunctions can be written as linear
combinations of plane waves e/**@?_ Factoring out e’** leads to Bloch’s theorem:

V() = e*uy(2), ug(x + a) = uk(x). (4)

Thus eigenstates are travelling waves modulated by a periodic function.

5. Symmetry in 1D

In 1D, the Schr”odinger equation is a second-order ODE, so for each energy there are only
two independent solutions. Together with time-reversal/inversion symmetry,

E(k) = E(=k), (5)

this implies that there can be no additional degeneracy at a fixed k. Therefore, in 1D bands
cannot cross.



6. Location of extrema

Because E(k) = E(—k), the derivative dE'/dk vanishes at k = 0 (the ' point). At the zone
edge k = +m/a, Bragg reflection couples +k states into standing waves with zero group
velocity. Therefore extrema occur only at I' and at the zone boundary.

7. Free electron bands and folding

If V =0, the dispersion is free-electron-like:

By = EF (6)

2m

Folding into the first Brillouin zone produces overlapping parabolas. At the zone boundary,
different plane waves become degenerate.

8. Periodic potential and gap opening

A periodic potential couples states differing by reciprocal lattice vectors. At the zone bound-
ary, plane waves e*™%/% are degenerate. The potential couples them, leading to standing
waves:

cos(mx/a), sin(rx/a). (7)

One has density maxima on the ions, the other has nodes on the ions, so their energies split.
This opens a band gap.

9. Two-level picture at the boundary

Near k = 7/a, the subspace spanned by ¢™*/® and e~"*/% leads to a 2 x 2 Hamiltonian

_(Ey Vg
"= (Vé Eo) ’ ®)

where Ey = h?(m/a)?/2m is the free-electron energy and Vg is the Fourier component of the

potential. Diagonalization yields
E = Ey+ Vg, 9)

so a gap 2|Vg| opens at the zone boundary.

10. Finite system size and allowed £ values

So far we treated the system as infinite, which makes £ continuous in the first Brillouin zone.
In a real sample of finite length L, there are only

M= (10)

unit cells.



Imposing Born—von Karman boundary conditions, ¢ (z + L) = ¢ (z), restricts the allowed

values of k to 5 M M
™m
k=—— =——, ..., +— —1. 11
L 9 m 2 ? 7+ 2 ( )
Thus within the first Brillouin zone [—m/a, 7 /a] there are exactly M distinct k-points,
equal to the number of unit cells. Each energy band therefore contains M states.
This connects the crystal momentum picture to counting of quantum states: the number

of states per band equals the number of unit cells in the crystal.

11. Kronig—Penney model

A concrete solvable model is the 1D Kronig—Penney potential: a periodic array of rectangular
barriers (well width w, barrier width b, height V4). The dispersion relation is
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with a =w+b, ¢ = V2mE/h, and = \/2m(Vy — E)/h.

This transcendental equation defines the allowed energies F(k). Gaps appear naturally
at the Brillouin zone edges, and the dependence on w, b, and V{ provides clear physical
intuition: larger barriers or wider spacing flatten bands and widen gaps.

cos(ka) = cos(quw) cosh(Bb) +

sin(qw) sinh(Sb), (12)

Summary: Bloch’s theorem ensures eigenstates are plane waves modulated by a periodic
function. In 1D, symmetry constrains bands to be even functions of k, forbids crossings, and
places extrema only at I' and zone edges. The periodic potential opens gaps at the zone
boundaries, which can be seen explicitly in both the simple two-level picture and the exactly
solvable Kronig-Penney model. For a finite crystal of length L, the number of allowed k
values per band equals the number of unit cells M = L/a.



