| ecture 6

LCAOQO tight binding hamiltonian



The starting point of this model is the decomposition of the total single-electron Hamiltonian into:

H = Hat + AU(r) ,

where Hat contains the kinetic energy plus the potential of a single ion (the one placed at R=0, say), and AU(r) is the potential generated
by all the others ions in the lattice except the one already considered. The eigenfunctions of the atomic problem satisfy the Schrodinger
equation

H @n(r) = En @n(r),
where n represents collectively a full set of (orbital) atomic quantum numbers.
We then expand a generic state localized around the atom as

(P(I’) =2n bn (Pn(r)

[notice that this basis set is not complete as the continuum states of the atom are left out of the sum].

We than make a combination of such localized states, with the symmetry of the lattice:

W(r) = 3r ell KR) @(r-R)



For fixed k, we plug this state into the Schrodinger equation:

H (r) = [Hat + AU(r)] W(r) = E(k) Y(r)
This differential equation maps to a matrix equation by multiplication on the left by o»"(r) and
integration over the r variable:

> nA(k)mn bn = E(k) 2n S(k)mn bn

This, for each fixed k, is a generalized eigenvalue problem for the matrix A(k), with a "metric" matrix B in
place of the identity. E(k) represents the eigenvalue, corresponding to the eigenvector b (of course, also b
is k-dependent, in general). The Hamiltonian matrix above is:

A(K)mn = ZR e(ikR) f POm™(r) H @n(r-R) dr

The Overlap matrix above is:

S(K)mn = D R eik®) | @u*(r) @n(r-R) dr

where the sums over R extend over all the lattice points.



This is conveniently rearranged (using the decomposition H = Hat + AU(r), the fact that
m*(r) are eigenstates of Hacand the orthonormality of n(r) and (om(r) ) into:

> n C(K)mnbm = (E(K) - Em) D n S(K)mn br

where the new matrix C(k) contains what is left of the Hamiltonian, i.e.

C(K)mn= ZR elikR) fcpm*(r) AU(r) on(r-R) dr
Now the eigenvalue (E(k) - Em) of the generalized secular problem measures the
displacement of the "band" energy E(k) with respect to the original atomic value Em.



The size of this matrix eigenvalue problem is clearly as large as the number of eigenstates of the atomic problem, i.e. infinite. It is therefore
necessary to do some approximation here. In particular, one could hope that all the off-diagonal matrix elements of the matrices at the
right side of this eq. could be neglected for some given level m. This cannot work for atomic degenerate levels where the couplings
between the degenerate levels form the main part of the Hamiltonian, the one that resolves the degeneracy: for the case of d-degenerate
levels, one has to solve at least a d-dimensional matrix problem (at each value of k).

The only case where it sometimes makes sense forgetting the interaction with all levels with n#m is with atomic s (I=0) non-degenerate
levels. In this approximation, the matrix equation becomes a | x| trivial problem, for which one takes bm=1 and all the other bn+m=0, and

only the "m" energy equation:

C(k)mm = (E(k) - Em) B(k)mm
remains, with solution:

E(k) = Em + C(k)mm/B(k)mm

Now, in the infinite R-sums of the definitions of the B(k) and C(k) matrices, it is convenient to separate the contribution from R=0, the
contribution from R in the first shell around the origin (first or nearest neighbors), the contribution of the second shell around the origin
(second neighbors), etc.The R=0 contribution to B(k) is |,and that to C(k) is



t is a negative quantity, reflecting the attraction that the "other"” nuclei produce on the band electron, which
was not there when the atom was isolated.We shall indicate the R#0 contributions to B(k) and C(k) as

SR)= J @m*(r) Pm(R) dr t(R)= J @m*(r) AU(r) @m(rR) dr

respectively. Noting that by symmetry B(-R)=B(R) and Y(-R)=Y(R), and that in all Bravais lattices in the
sums over R when some vector R is present, also -R is present, one can replace the complex exponentials
with cosines, and rearrange the solution for E(k) to:

E(k) = Em + [X + 3 reo cos(k R) Y(R)] / [I + 3 rs0 cos(k R) B(R)]

This E(k) gives the tight-binding band structure in terms of a set of parameters B(R), X and Y(R).We also
have an explicit recipe to compute these parameters in terms of overlap integrals at different sites.

Due to the localized shape of the atomic wave functions, both B(R) and Y(R) become exponentially small

for large R.



It therefore makes sense to ignore all the integrals outside some Rmax, which would bring

in only negligible corrections to the band structure E(k). In particular, the simplest
approximation, that gives a band structure depending on a minimal number of parameters

is to neglect all the B(R)'s (so that the denominator becomes unity) and to include only
the t(R) for nearest neighbor (NN). In this approximation the expression simplifies further

to:

E(k) = Em+ X + YZR(NN) cos(k R)

where we indicated with t the value of t(R) for nearest neighbors.



The sign of t(R) is determined by the relative signs of the tails of the wave-functions (om(r) and (m(r-R)

in the overlapping region. For s-orbitals, t(R) has the same sign as AU(r), i.e. negative.As a consequence,
s-band tight binding places the bottom of the band at k=0 (similarly to a free- electron-like dispersion).

However, for p bands one can see qualitatively that the overlapping tails of the wave-functions (om(r)

and @m(r-R) can have opposite sign (the p wave-function changes sign across some plane passing in the
nucleus), thus t(R)>0 in that case.As a consequence, a p band shows typically a

band maximum at k=0, with negative curvature of E(k)
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FIGURE 2-8

The four types of interatomic matrix elements entering the study of s- and p-bonded
systems are chosen as for diatomic molecules as shown in Fig. 1-11. Approximate values
for each are obtained from the bond length, or internuclear distance, d, by Vij = n;h?/md?,
with n; taking values given in Table 2-1 and in the Solid State Table at the back of the
book. When p orbitals are not oriented simply as shown in the upper diagrams, they
may be decomposed geometrically as vectors in order to evaluate matrix elements as
tlustrated in the bottom diagrams. It can be seen that the interatomic matrix element at

the bottom right consists of cancelling the contributions that lead to a vanishing matrix
element.
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Fig. 23: (a) The unit cell
and (b) Brillonin zone of two-
dimensional graphite are shown
as the dotted rhombus and the
shaded hexagon, respectively. a;,
and b;, (# = 1,2) are unit vec-
tors and reciprocal lattice vee-
tors, respectively. Energy disper-
sion relations are obtained along
the perimeter of the dotted tri-
angle connecting the high sym-
metry points, I', X and M.

spin orientation, both electrons occupy the bonding  energy band, which makes
the total energy lower than ¢z,.

2.3 Two-Dimensional Graphite

Graphite is a three-dimensional (3D) layered hexagonal lattice of carbon atoms.
A single layer of graphite, forms a two-dimensional (2D) material, called 2D
graphite or a graphene layer. Even in 3D graphite, the interaction between two
adjacent layers is small compared with intra-layer interactions, since the layer-
layer separation of 3.35A is much larger than nearest-neighbor distance between
two carbon atoms, ac-c=1.42A. Thus the electronic structure of 2D graphite is
a first approximation of that for 3D graphite.

In Fig. 2.3 we show (a) the unit cell and (b) the Brillouin zone of two-
dimensional graphite as a dotted rhombus and shaded hexagon, respectively,
where @, and d; are unit vectors in real space, and 51 and 5.; are reciprocal
lattice vectors. In the r,y coordinates shown in the Fig. 2.3, the real space
unit vectors d; and @ of the hexagonal lattice are expressed as

i = (ﬁa. 3), & = (ﬁa. -5), (2.22)

s il 2 2

where a = |d@)| = |@;] = 1.42 x V3 = 2464 is the lattice constant of two-
dimensional graphite. Correspendingly the unit vectors by and by of the recip-
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rocal lattice are given by:

- 2x 2« - 2= 27

i, =(E’T)' %:(75;,-7) (2.23)
corresponding to a lattice constant of 47 /+/3a in reciprocal space. The direction
of the unit vectors &, and b, of the reciprocal hexagonal lattice are rotated by
80% from the unit vectors &@; and a; of the hexagonal lattice in real space, as
shown in Fig. 2.3, By selecting the first Brillouin zone as the shaded hexagon
shown in Fig. 2.3(b), the highest symmetry is obtained for the Brillouin zone
of 2D graphite. Here we define the three high symmetry points, I', K and M
as the center, the corner, and the center of the edge, respectively, The energy
dispersion relations are calculated for the triangle FM K shown by the dotted
lines in Fig. 2.3(b).

As discussed in Sect. 2.3.2, three o bonds for 2D graphite hybridize in a
sp? configuration, while, and the other 2p, orbital, which is perpendicular to
the graphene planc, makes = covalent bonds. In Sect. 2.3.1 we consider only
energy bands for 2D graphite, because we know that the = energy bands are

covalent and are the most important for determining the solid state properties
of graphite,

£2.3.1 = Bands of Two-Dimensional Graphite

Two Bloch functions, constructed from atomic orbitals for the two inequivalent
carbon atoms at A and B in Fig. 2.3, provide the basis functions for 2D graphite.
When we consider only nearest-neighbor interactions, then there is only an in-
tegration over a single atom in M4 and gp. as is shown in Bq. (2.16), and
thus Hax = Mgy = ¢z TFor the off-diagonal matrix element 2 45, we must
consider the three nearest-neighbor B atoms relative to an A atom, which are
denoted by the vectors £, . ﬁg, and H,. We then consider the contribution to
Eq. (2.17) from ﬁ.‘,fég, and 5 as follows:

Hap = f(e“ By JER, +e-£-ﬁx)

= tf(k)

(2.24)
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where 1 is %;v;n b'y Eq. (2.18)* and f(k) is a function of the sum of the phase
factors of ¢'* ™ (j =1,--.,3). Using the T,y coordinates of Fig. 2.3(a), J(k) is

given by: W
(k) = c"*-r‘/ - 2e-‘*=°ﬁ£{cos (%L“) , (2.25)

Si.noc f(k) is a complex function, and the Hamiltonian forms Hermitian ma-
’,nx, we write Hga = H3p in which * denotes the complex conjugate, Us-
ing Eq. (2.25), the overlap integral matrix is given by Sia= Spp = 1. and
Sap = sf(k) = Sp,. Here s has the same definition as in Eq. (2.19) so’ that
the explicit forms for 7¢ and S can be written as: | .

o tf(k) 1 sf(k)
a ' y § = - . (220)
tf(k)* e sf(k)* 1

Solving the secular equation det(? — ES) = 0 and using M and § as given in
Eq. (2.26), the eigenvalues E{k) are obtained as a function w(l-:.), ke and &,:

- t ) "
Epo(f) = =20, (227
w

whert.e the + signs in the numerator and dencminator go together giving the
bonding 7 energy band, and likewise for the — signs, which give the anti-bonding
7" band, while the function w(E} 1s given by:

B = 1+ 4con V3 "
= SRR = 8  kya kya
vV F(k) L+ 4cos ~— cos—;—-+4cosz——;-—. (2.28)

w(E

L

In Fig. 2.4, the energy dispersion relations of two-dimensional graphite are
show.n throughout the Brillouin zone and the inset shows the energy dispers:nn
.relatmns along the high symmetry axes along the perimeter of the triangle shown
?n Fig. 2.3(b). Here we use the parameters €2 = 0,1 = =3.033¢V, and s = 0.129
In order to reproduce the first principles caleulation of the graphib'c energy I>a‘,nf'.q
[9,4.8]. The upper half of the energy dispersion curves describes the -:r’-cner “"
ar.lt,l-bonding band, and the lower half is the T-energy bonding band. The u gc}r
7° band and the lower x band are degenerate at the K points through wi)?fh

*We often use the sy '
. vinbol f : :
bl el ony 7o for the nearest neighbor transfer integral. ~s is defined Ly a
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v e —

Fig. 2.4: The energy dispersion relations for 2D graphite are
shown throughout the whole region of the Brillouin zone. The
inset shows the energy dispersion along the high symmetry direc-
tions of the triangle M K shown in Fig. 2.3(b) (see text).

the Fermi energy passes. Since there are two r electrons per unit cell, these two
= electrons fully occupy the lower = band. Since a detailed calculation of the

density of states shows that the density of states at the Fermi level is zero, two-
dimensional graphite is a zero-gap semiconductor. The existence of a zero gap at
the X points comes from the symmetry requirement that the two carbon sites A
and B in the hexagonal lattice are equivalent to each other.! The existence of a
zero gap at the K points gives rise to quantum effects in the electronic structure
of carbon nanotubes, as shown in Chapter 3.

When the overlap integral s becomes zero, the = and 7* bands become
svmmetrical around E = ¢ which can be understood from Eq. (2.27). The
energy dispersion relations in the caseof s = 0 (i.e., in the Slater—Koster scheme)
are commonly used as a simple approximation for the electronic structure of a

graphene layer:
ak 2 A
E.ap(ks, ky) =+t {1 + 4 cos (\/-2"0) cOs (—%‘1) + 4 cos® (_g_‘_{)}

'1f the A and B sites had different atoms such as B and N, the site energy ¢zp would be
different for B and N, and therefore the calculated energy dispersion would show an energy

gap between the = and #* bands.

1/2

(2.29)
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within the ovals represent the numbering of
de lattice. The small circles
rs within them represent the

distance below the planc of the figure in units of a/3.

The numbers
pond orbitals in a aincblen
represent atoms, the numbe

previous section, following a procedure similar to that used for CsClin Chapter 2.
There we had a particularly simple system of identical orbitals (initially chlorine s
orbitals) on a simple cubic lattice ; cach orbital was scparated from every ot her by
integral multiples of lattice vectors of length @ in the directions of cube edges. In
that case the correct linear combination of orbitals could be written immediately
as N, 12y, ¢ 715>, where K is the wave number characterizing the state and
|5, is the atomic orbital at the site r;. NOW we have four distinct types of hond
orbitals. as indicated in Fig. 3-3 and in analogy with the three differcnt types ol p
orbitals in CsCl. We also have four distinct types of antibonding orbitals. In
constructing a band state as a linear combination of the eight different kinds of
basis orbitals, it remains true that the coefficients for any two orbitals of the same
type are related by a factor o 1) where K is again characteristic of the stat¢
and r, and r; are the sites of the two orbitals. (This can be shown by using group
theory and the translational symmetry of the lattice.) Symmetry alone does not
determine relative values of cocfficients for the eight different orbital types.
However, knowledge of the translational symmetry can reduce the size of the
Hamiltonian matrix shown schematically in Fig. 3-4 from 10?* by 10** to 8 by 8,
and that is the difference between an insoluble and a soluble problem.
A wave number must again be associated with every stale: for cach wave
number we construct eight different Bloch sums, four for the bond orbital types,

| 2a(K)) = E‘: e 7 |b,(r — 1IN No. (3-19)

and four for the antibonding orbital types. The value N is the number of atom

pairs, equal to the sumber of bonds of cach type. The position r, is taken 1o be the

midpoint of the corresponding bond. Each eigenstate of wave number k can be

3-C  The LCAO Bands

num .

[th> = }_‘, 4y | (k) (3-20)

In contrast, in CsCl we :

. AL sufficiently simplifi :

ab et y simplified the m: ,

‘hleto use single Bloch sums, of the kind in Eq. (3-19) — e.lcm c ms' ”.\M il o
at here. L as cigenstates ; we cannot do
As in CsCl, the wave number | i

e < _ number s restricted so that it lies in a Brillous

stmct:rpb‘e (I’E“:i‘:;l ;onc is different for a zincblende or fmx-ocnur:.rlt:guéﬂbz'mm iy

[Ollla.--“-’,'[mc}la.;,l e[':ln J}ET—Z" ;ﬂ;::ab i separated by primitive rmnstzacn‘f;ft:lr

crystallo Yty LA o O TR multiples of primitive translations Thi

e larti cg:‘:f’a'::’ :::;:::1 \;;u- defined in Section 3-A.) Thus the :uldillai::: !;}p(’:::s

e, to the k appcar'uj [ E|]2n.fa. [1m21f:"a. [111]2n/a, or integral multiples o}

Betor. (This is easil & r:g q. (3-19), multiplies the entire sum by the same phase

Bonding wave numub ed.) .1 his 1 not an independent Bloch sum "lhc forr-

wave number that h rs are said to be equivalent, and we need not consid =

B ouin Zone sh as an equivalent wave number of smaller magnit dcr The

i ;icol:::i 113).[?13- :1-6 15 that of a zinchlende lattice (;&:: !‘;m:. :fh:l

B o wave uun l:: and is the one we shall be using. A full treatment ol the

BRob. The reader who is not far for this system is not possible in a single p:

E: B solid 10 18 nol familiar with this topology will find full g i
il stale physics text, such as Kittel (1976). S

by mininm?'r:i?; "(":’UT};(I:, m;?; Blrillouin Zone we seek the lowest energy solutio
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Chapter 1. The equations analogous to Eq. (1-10) arc jocnced AP
L \" ey, N -}.'*-L
’,_.,:._.1'.\:: _’,)E'“-\_, - r | f/" ’:. *.
Z H,,(kh‘ = Egu.. (3'21) q‘? ' t ‘ 3 } g.. i ,-"'E'&f."w..i iy E 2
’ R N N TR R
-_.{ 87 Ipv> ' '{\. v
where the matrix elements and eigenvalues depend upon k: that is, i_,. B ‘f tf "‘-\! " A
- |5 DA :}:,
HBI = <I-(k)'lel(k)> (3'22) | “:- ‘N:\*i/"‘ \'1 lp;‘) ail y
The eight solutions to Egs. (3-21) are called the eigenstares of the matrix H,, and e . * {’ f'{' N e
are the electron states in the approximation that cach cigenstate can be written st b % 3 3
in the form of Eq. (3-20). o | - A,
" Y 7, i 3 2 s ho% 1 :
A Return to Atomic Orbitals { & __...‘:35-..‘. o Lo 7 D
\.v-k-“': f' '.." 'U.' h 5‘.._ ';‘
Al this stage we must evaluate the matrix elements and then solve Egs. (3-21)to R -
obtain cigenstates and encrgy bands. However, for our method of determining +ald s’ g
interbond matrix elements from the nteratomic matrix clements of Table 2-1, the ', , al? ‘l
usc¢ of bonding orbitals and antibonding orbitals becomes inconvenient. For B
example, in Fig. 3-5, notice that we seek matrix elements between Bloch sums _ -
based upon bond orbitals of type 1 and type 2. We may focus on a particular bond FIGU "F'_ 3- .« orbitals in a zincblende lattice. The central atom
orbital of type 2 and sce that there are matrix elements between it and bond Numbering of atomic ?" ll":a tom. a cation: then the four neighbors are
orbitals in adjacent bonds. and also matrix elements between it and bond orbitals 15 i‘masmc‘1 to be a| "::::‘ ils imagi;red to be in the plane of the figure,
in second-neighbor bonds arising from hybrids on the two atoms between, which anions. Th.c oc(;“?h:--cm)rdinatc ol cach anion is indicated as +a/4.
are necarest-neighbor atoms. Thus we lose the simplicity provided by nearest- the plane z = Qrc no} oy
neighbor matrix elements because of our choice of basis. This will nevertheless be Orbitals |p. >

convenient in Chapter 7 when we seck approximate solutions. For now, we seck
an exact solution, and for this it is much better to follow Chadiand Cohen (1975)
in using atomic orbitals as the basis. This is obviously equivalent since the bond The Hamiltonian Matrix

orbitals have been written as sums of atomic orbitals. The result of a transforma- h sums
tion from the eight types of bond orbitals and antibonding orbitals to the six p Consider first a matrix element H,.(k), from Eq. Gj”(’;(j""!‘(f?&ﬁlﬁtccﬁon. In
orbitals and two s orbitals on the two atom types is a sct of eight simultancous are taken over a p orbital on the metallic atom, orien e
equations of the form of Eq. (3-21), but with the Bloch sums of Eq. (3-19) replaced zincblende. since all nearest neighbors are nonmgtalllc atomH, ") of Eq. (3-22)
by sums over equivalent atoms (sums over cations or anions) at positions r, of matrix elements enter the calculation; the matrix e{emc;\nt -&r‘::c o St by
atomic s orbitals, or sums over one of the oricntations of p orbitals on equivalent ~ becomes simply a sum over N, p orbitals or}cnt'?d in ‘t. t:| X i ot};cr diaascal
atoms. It will be more convenient to obtain matrix clements between such Bloch N,. which is simply &5, with ¢ denoting “ cation.” Similarly, every

: TR . ¥ St ga o . : re, no
sums, and the diagonalization of the corresponding matrix will give exactly the " matrix clement is simply the corresponding atomic term value. Furthermo
same bands as the diagonalization of the equivalent matrix based upon bonding P

i ith those
: - le Bloch sums of cation states with the
and antibonding orbitals. Making this change also bypasses the ambiguity we °Mmg°nal-matm elcmenl!; Hllr’g‘n)mo:‘:)‘f) anion states with those of other anion
discussed concerning covalent and polar energies, since all matrix elements can RS FACION RN, O RO ! ghas
now be written explicitly in terms of matrix clements between atomic orbitals. states, Ho,(k), from Eq. (32 2), where a corresponds to a ca
We redraw some of the bond orbitals of Fig. 3-5 to show atomic orbitals, Lﬂ L oW, OOk W =4 P (;rbi1a|. Each orbital {s°| in the sum making up the
orienting them along the cube directions. The set of five atoms in the upper right orbital and f to a: am::?atrix elements V,,, between it and the four neighboring
corner of Fig. 3-5 will suffice: the corresponding orbitals are sketched in Fig. 3-7. state (x,(k)| ‘Y'“_ BVG EaRtis 7- each of these neighboring orbitals enters the
Imagine the central atom to be metallic. orbitals |s*), indicated in Fig. 3-7; eac

matrix element V.., with a phase factor differing from that of the |s°) orbital by
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¢™ % with d, being the vector distance to that neighbor. The two factors of N '?
are cancelled by the number of terms in the y, sum, leading to a matrix element

Hon(k) = V,, Y &%

. [esqn,~1,+n,u.-4+ Py RS =k k= Rodaid e“f-t,—k,ﬁl,)m'-tl.
e .

(3-23)

The matrix element H .. (k) is casily scen to be the complex conjugate of this,
and in fact H,, (k) = Hg, (k)* in general; that is, the matrix is Hermitian.

Similarly, the matrix element I, ..(k) can be seen to consist of four terms, and
each of the four terms is obtained by decomposing the orbital pl into ¢ and =
components for each one of the four neighbors: between the = component and the
neighboring s orbital the matrix clement is zero but between the ¢ component and
the neighboring s orbital the matrix clement is + ¥, /3"% The 37 is the
coefficient in the decomposition; and the sign of the matrix element depends upon
whether the s orbital lies in the direction of the positive or negative lobe of the p
orbital. This 1s sufficient to show how the matrix elements are evaluated.

We now simply give the results obtained by Chadi and Cohen (1975) for each
matrix element. The neighbors to the cation (designated with subscript numerals)
and their vector distances are given as

dy = [111)a/4; |

5 3-24
Then four sums of phase factors are defined by
golk) = A 41 A4 Ay A |
g[(k)r‘ c‘". +e"‘3 = el‘-") * e"‘q;
ga(k) = €™ 41 — o™ 42 4 oAt _ Al > s
go(k) = % — R 02 A 4 Ao
Finally, composite matrix elements are defined by
E . =V_:
E, e V. ‘/3“2;
2 i (3-26)

E = 1/3V,,, + 2/3V,,.;
E, =13V, —1/3V,..

TABLE 3-1

Ihe LCAO Hamiltonian matrix for the zinchlend
' ¢ structure. Pa lers : .
m Egs. (3-25) and (3-26). ramelers are defined

-

—

— e —

¥ o Pi P [ " i r
£l & Eudo 0 0 0 Ewgr  Ega: E,g,
# | E.qf 6  —E,gt -E,gl - Eug 0 0 0
K| O - Eoplls - 0 0 Festlo Eguy E, g,
gl o —E,.3 0 £y 0 Ey,oy E..g¢e E,g,
| O — &8s 0 0 Cp Eoov Eng: E..g
P Ene? 0 E..g8 E.a% Ewat & 0 0
AR 0 Engt Engd Engt O £y 0
;| Eipa¥ 0 E.q} Eya1 Eaghi 0 0 i

SURCE: Obtained from form given by Chadi and Cohen (1975)

In qu 3-2§ and 3-26 our definitions differ by a factor of four from those used by
- Chadi and Cohen. but the final matrix is cquivalent, except that we do not distin-

ﬁish two types of E,,.) Now the Hamiltonian matrix can be written as in Table

The Energy Bands
|

All parameters have now been specified in detail: encrgy bands can be obtained
F & a function of k by diagonalizing the matrix in Table 3-1 for cach k. For
- uba{mry wave numbcers this would need (o be accomplished numerically, but at
: Specna! wave numbers or for wave numbers along symmetry hines in the Brillouin
| 2_one it can be accomplished analytically. Let us diagonalize the matrix analy-
fcally for the point T at the center of the Brillouin Zone, k=0 At k=0
=0 =g,=0and g, = 4. Thus all off-diagonal matrix elements in Table 3-f
vanish except those coupling 5° with s*, those coupling p{ and 7, and so on. The

2

7
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solution for €ach coupled pair of Bloch sums s immediate, leading to energies of

E=f:-§5 * V,ii;-i;)r-;;‘:;. ’

— ) (3-27)
—E———— |
E=-L——ff;r + \/(‘?-,5) + (45..)’-‘

The energy in the second equation s triply degencrage, £IVIng one state for p, . one
for p, . and one for p_ orbitals The CXpressions in Eqs. ( 3-27) will prove Cxtremely

have been hardly distinguishabje.
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FIGURE 3-8

The energy bands of germanium. Part (a) gives the bands based upon s and p valence states and matrix elements taken from the Solid State
Table. Second-neighbor interatomic matrix clements are neglected but otherwise the calculation is exact. Part (b) gives the bands obtained
by Grobman, Eastman, and Freeouf (1975) by combining pscudopotential calculations with experimental optical studies: the points indicated
with arrows were associated with experimental determinations. Part (c) gives the free-electron bands, #°k?/(2m) with each state shifted into
the Brillouin Zone by addition of the appropriate lattice wave number.
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