
Lecture 6
LCAO tight binding hamiltonian



The starting point of this model is the decomposition of the total single-electron Hamiltonian into:

H = Hat + ΔU(r) ,

where Hat contains the kinetic energy plus the potential of a single ion (the one placed at R=0, say), and ΔU(r) is the potential generated 
by all the others ions in the lattice except the one already considered. The eigenfunctions of the atomic problem satisfy the Schrödinger 
equation

H φn(r) = En φn(r) ,
where n represents collectively a full set of (orbital) atomic quantum numbers.

We then expand a generic state localized around the atom as

φ(r) = ∑n bn φn(r)

[notice that this basis set is not complete as the continuum states of the atom are left out of the sum].

We than make a combination of such localized states, with the symmetry of the lattice: 

ψ(r) = ∑R e(i k·R) φ(r-R)



For fixed k, we plug this state into the Schrödinger equation: 

H ψ(r) = [Hat + ΔU(r)] ψ(r) = E(k) ψ(r)

This differential equation maps to a matrix equation by multiplication on the left by φm*(r) and 
integration over the r variable:

∑nA(k)mn bn = E(k) ∑n S(k)mn bn
This, for each fixed k, is a generalized eigenvalue problem for the matrix A(k), with a "metric" matrix B in 
place of the identity. E(k) represents the eigenvalue, corresponding to the eigenvector b (of course, also b 
is k-dependent, in general). The Hamiltonian matrix above is:

A(k)mn = ∑R e(i k·R) ∫ φm*(r) H φn(r-R) dr 
The Overlap matrix above is:

S(k)mn = ∑R e(i k·R) ∫ φm*(r) φn(r-R) dr 
where the sums over R extend over all the lattice points.



This is conveniently rearranged (using the decomposition H = Hat + ΔU(r), the fact that 
φm*(r) are eigenstates of Hat and the orthonormality of φn(r) and φm(r) ) into:

∑n C(k)mn bm = (E(k) - Em) ∑n S(k)mn bn

where the new matrix C(k) contains what is left of the Hamiltonian, i.e.

C(k)mn= ∑R e(i k·R) ∫φm*(r) ΔU(r) φn(r-R) dr

Now the eigenvalue (E(k) - Em) of the generalized secular problem measures the 

displacement of the "band" energy E(k) with respect to the original atomic value Em.



The size of this matrix eigenvalue problem is clearly as large as the number of eigenstates of the atomic problem, i.e. infinite. It is therefore 
necessary to do some approximation here. In particular, one could hope that all the off-diagonal matrix elements of the matrices at the 
right side of this eq. could be neglected for some given level m. This cannot work for atomic degenerate levels where the couplings 
between the degenerate levels form the main part of the Hamiltonian, the one that resolves the degeneracy: for the case of d-degenerate 
levels, one has to solve at least a d-dimensional matrix problem (at each value of k).

The only case where it sometimes makes sense forgetting the interaction with all levels with n≠m is with atomic s (l=0) non-degenerate 
levels. In this approximation, the matrix equation becomes a 1×1 trivial problem, for which one takes bm=1 and all the other bn≠m=0, and 
only the "m" energy equation:

C(k)mm = (E(k) - Em) B(k)mm 

remains, with solution:

E(k) = Em + C(k)mm/B(k)mm

Now, in the infinite R-sums of the definitions of the B(k) and C(k) matrices, it is convenient to separate the contribution from R=0, the 
contribution from R in the first shell around the origin (first or nearest neighbors), the contribution of the second shell around the origin 
(second neighbors), etc.The R=0 contribution to B(k) is 1, and that to C(k) is



t is a negative quantity, reflecting the attraction that the "other" nuclei produce on the band electron, which 
was not there when the atom was isolated.We shall indicate the R≠0 contributions to B(k) and C(k) as

S(R)= ∫φm*(r) φm(r-R) dr t(R)= ∫φm*(r) ΔU(r) φm(r-R) dr

respectively. Noting that by symmetry β(-R)=β(R) and γ(-R)=γ(R), and that in all Bravais lattices in the 
sums over R when some vector R is present, also -R is present, one can replace the complex exponentials 
with cosines, and rearrange the solution for E(k) to:

E(k) = Em + [χ + ∑R≠0 cos(k·R) γ(R)] / [1 + ∑R≠0 cos(k·R) β(R)]

This E(k) gives the tight-binding band structure in terms of a set of parameters β(R), χ and γ(R).We also 

have an explicit recipe to compute these parameters in terms of overlap integrals at different sites.

Due to the localized shape of the atomic wave functions, both β(R) and γ(R) become exponentially small 

for large R.



It therefore makes sense to ignore all the integrals outside some Rmax, which would bring 
in only negligible corrections to the band structure E(k). In particular, the simplest 
approximation, that gives a band structure depending on a minimal number of parameters 
is to neglect all the β(R)'s (so that the denominator becomes unity) and to include only 
the t(R) for nearest neighbor (NN). In this approximation the expression simplifies further 
to:

E(k) = Em + χ + γ∑R(NN) cos(k·R)

where we indicated with t the value of t(R) for nearest neighbors.



The sign of t(R) is determined by the relative signs of the tails of the wave-functions φm(r) and φm(r-R) 
in the overlapping region. For s-orbitals, t(R) has the same sign as ΔU(r), i.e. negative. As a consequence, 
s-band tight binding places the bottom of the band at k=0 (similarly to a free- electron-like dispersion).

However, for p bands one can see qualitatively that the overlapping tails of the wave-functions φm(r) 
and φm(r-R) can have opposite sign (the p wave-function changes sign across some plane passing in the 
nucleus), thus t(R)>0 in that case. As a consequence, a p band shows typically a

band maximum at k=0, with negative curvature of E(k)


















