
Hubbard Dimer Green’s Function: Exact, G0W0 and scGW

1 Exact Solution : Basis and Operators

We will explain the Python implementation of the exact Green’s-function and spectral-function
calculation for a two-site Hubbard dimer at quarter filling (one up electron). The code works in
the full Fock basis of four spin-orbitals (site 1 ↑, site 1 ↓, site 2 ↑, site 2 ↓), i.e. a 16-dimensional
many-body space.

1.1 Fock-space dimension

We set:

1 basis_size = 16 # 2^4 configurations for 4 orbitals

Four spin-orbitals ⇒ 24 = 16 occupation-number states.

1.2 Creation operator: create op(p)

This function builds the 16× 16 matrix for the fermionic creation operator c†p in the Fock basis:

1 def create_op(p):

2 """ Return the creation operator matrix for orbital p in the 16-dim

Fock basis."""

3 mat = np.zeros(( basis_size , basis_size), dtype=complex)

4 for s in range(basis_size): # loop over basis

states (0 15 )

5 if not (s & (1 << p)): # if orbital p is

empty in state s

6 # fermion sign from parity of lower bits

7 sign = (-1)**bin(s & ((1 << p) - 1)).count("1")

8 s_new = s | (1 << p) # set bit p new

state index

9 mat[s_new , s] = sign # matrix element

s_new | c _p | s

10 return mat

• s is an integer whose binary bits encode occupations of the 4 orbitals.

• (1 << p) is a mask with a 1 in bit position p.

• s & (1<<p) tests if bit p is already occupied.

• bin(...) .count("1") counts how many lower bits are set to get the fermionic sign.

• s new = s | (1<<p) flips bit p from 0 to 1.
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• The resulting matrix mat satisfies

(c†p)snew,s = (−1)#{occupied<p}, (c†p)·,s = 0 otherwise.

1.3 Annihilation operators

Once c dag holds creation matrices, annihilation operators are their Hermitian adjoints:

1 c_dag = [create_op(p) for p in range (4)]

2 c = [op.conj().T for op in c_dag] # c[p] = (c_dag[p])^

Each c dag[p] and c[p] is 16× 16.

1.4 Number operators

Define on-site number operators
np = c†p cp

in code:

1 n_op = [c_dag[p] @ c[p] for p in range (4)]

2 # n_op[p] is the 16 16 number matrix for orbital p

2 Hamiltonian Construction

The full many-body Hamiltonian is built in Fock space:

1 # zero matrix

2 H = np.zeros ((basis_size , basis_size), dtype=complex)

3

4 # hopping term: -t sum_{ }( c _ {1 } c_{2 } + h.c. )

5 H += -t * (c_dag [0] @ c[2] + c_dag [2] @ c[0]

6 + c_dag [1] @ c[3] + c_dag [3] @ c[1])

7

8 # interaction: U (n_{1 }n_{1 } + n_{2 }n_{2 })

9 H += U * (n_op [0] @ n_op [1] + n_op [2] @ n_op [3])

10

11 # orbital energies: _p n_p

12 H += epsilon * sum(n_op)

3 Diagonalization and States Extraction

3.1 Solve eigenproblem

1 E, V = np.linalg.eigh(H) # eigenvalues E (length 16) and eigenvectors V

(16 16 )

3.2 Total number operator

1 N_tot = sum(n_op)
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3.3 Identify sectors by particle number

Use expectation of Ntot to pick out vacuum, 1-electron, 2-electron states:

1 def find_states_by_N(N):

2 idxs = []

3 for idx in range(basis_size):

4 v = V[:, idx]

5 n_val = np.real(v.conj().T @ (N_tot @ v))

6 if abs(n_val - N) < 1e-6:

7 idxs.append(idx)

8 return idxs

9

10 idx_0 = find_states_by_N (0)[0]

11 idx_1 = sorted(find_states_by_N (1), key=lambda i: E[i])[0]

12 idx_2 = find_states_by_N (2)

13

14 psi0 = V[:, idx_0]; E0 = E[idx_0]

15 psi1 = V[:, idx_1]; E1 = E[idx_1]

16 psi2_list = [V[:, i] for i in idx_2]

17 E2_list = [E[i] for i in idx_2]

4 Green’s Function via Lehmann Representation

Define frequency grid and small broadening η:

1 omega = np.linspace ( -10 ,10 ,2000)

2 eta = 0.05

Compute the one-particle Green’s function at site/orbital p:

1 def compute_G(p_index):

2 G = np.zeros_like(omega , dtype=complex)

3 # hole part (removal)

4 amp_rem = np.vdot(psi0 , c[p_index] @ psi1)

5 G += (abs(amp_rem)**2) / (omega - (E1-E0) - 1j*eta)

6 # particle part (addition)

7 for psi2 , E2 in zip(psi2_list , E2_list):

8 amp_add = np.vdot(psi2 , c_dag[p_index] @ psi1)

9 G += (abs(amp_add)**2) / (omega - (E2-E1) + 1j*eta)

10 return G

11

12 G_up = compute_G(p_index =0)

13 G_down = compute_G(p_index =1)

Spectral functions:

1 A_up = -1/np.pi * np.imag(G_up)

2 A_down = -1/np.pi * np.imag(G_down)
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5 Limiting cases

5.1 N=2 exact energies from our previous derivation

Recall from previous lectures:

Table 1: Two-electron sector eigenvalues and eigenstates

Eigenvalue Eigenstate Description

2ϵ+ U
2 −

√(
U
2

)2
+ 4t2

|↑↓,0⟩+|0,↑↓⟩+X
|↑,↓⟩−|↓,↑⟩√

2√
2+X2

Ground state (Singlet)

2ϵ+ U |↑↓,0⟩−|0,↑↓⟩√
2

Singlet excited state

2ϵ+ U
2 +

√(
U
2

)2
+ 4t2

|↑↓,0⟩+|0,↑↓⟩− 1
X

|↑,↓⟩−|↓,↑⟩√
2√

2+1/X2
Singlet excited state

2ϵ | ↑, ↑⟩ Triplet state (S = 1, Sz = +1)

2ϵ | ↓, ↓⟩ Triplet state (S = 1, Sz = −1)

2ϵ |↑,↓⟩+|↓,↑⟩√
2

Triplet state (S = 1, Sz = 0)

5.2 Non-interacting limit (U = 0)

One-electron sector. The single-particle Hamiltonian

H1e =

(
ϵ −t
−t ϵ

)
diagonalizes to

E1 = ϵ− t, E2 = ϵ+ t,

with eigenvectors

|ψ1⟩ =
1√
2

(
1
1

)
, |ψ2⟩ =

1√
2

(
−1
1

)
.

Two-electron sector. For U = 0, two electrons fill these orbitals independently, giving possible
energies

2(ϵ− t), (ϵ− t) + (ϵ+ t) = 2ϵ, 2(ϵ+ t).

Green’s function. The exact one-particle Green’s function reduces to the non-interacting form

Gσ
ij(ω) =

∑
α=±

ψiα ψ
∗
jα

ω − (ϵ+ αt) + iη
, ψiα =

1√
2
.
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Spectral function. The on-site spectral function is

Aii(ω) = − 1

π
Im Gii(ω) =

1

2

[
δ
(
ω − (ϵ− t)

)
+ δ
(
ω − (ϵ+ t)

)]
.

Figure 1: Two site Hubbard model at Quarter filling, U=0, spin up spectral function.
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Figure 2: Two site Hubbard model at Quarter filling, U=0, spin down spectral function.

5.3 Strongly interacting limit (U ≫ t)

In the limit U ≫ t the two-site Hubbard dimer approaches the atomic regime, with electrons
essentially localized on individual sites. One can obtain the leading corrections by expanding the
exact eigenvalues in powers of t/U .

Two-electron singlet levels. From the exact expressions (Table 2),

E± = 2ϵ+
U

2
± 1

2

√
U2 + 16 t2,

expand for U ≫ t: √
U2 + 16 t2 = U

√
1 +

16 t2

U2
≈ U +

8 t2

U
,

so

E− ≈ 2ϵ+
U

2
− 1

2

(
U + 8 t2

U

)
= 2ϵ− 4 t2

U
, E+ ≈ 2ϵ+ U +

4 t2

U
.

Triplet levels. The three triplet states remain degenerate at

Etriplet = 2ϵ,

up to corrections of order O(t4/U3).

Superexchange splitting. The singlet–triplet splitting in the low-energy manifolds is

J ≡ Etriplet − E− ≈ 4 t2

U
,

This J ∝ t2/U is the familiar superexchange energy in second-order perturbation theory.
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Spectral function. In the two-electron sector one finds three addition energies

ω− ≈ (2ϵ− E1e)−
4t2

U
, ω0 ≈ 2ϵ− E1e, ω+ ≈ (2ϵ− E1e) + U +

4t2

U
,

corresponding respectively to the lower-singlet, middle-triplet, and upper-singlet states. However,
since the ground state for N = 1 carries a single spin-up electron,〈

ψ
(2)
triplet

∣∣ c†1↓ ∣∣ψ(1)
0

〉
= 0,

only the two singlet transitions have nonzero overlap. Thus the spin-down addition spectral function
exhibits poles at ω− and ω+ (the two singlet peaks), whereas the intermediate triplet pole at ω0

carries zero spectral weight and does not appear in the spectrum.
In the strict atomic limit t → 0 these collapse to two “Hubbard bands” at ω = 2ϵ − E1e and

ω = 2ϵ− E1e + U , each split by the small superexchange scale ∼ 4t2/U .

Physical intuition for the superexchange scale J ∼ 4t2/U . In the limit U ≫ t, real hopping
of electrons between sites is energetically costly (it would create a doubly-occupied site at energy
U). However, virtual hopping processes of second order in t still occur:

• Start in a state with one electron on each site (|↑, ↓⟩ or its spin-flipped partner).

• One electron virtually hops to the other site (amplitude t), creating a doubly-occupied site
and paying energy U .

• It then hops back (another factor t), returning to one electron per site.

Because of the Pauli principle, only the singlet combination 1√
2
(|↑, ↓⟩ − |↓, ↑⟩) can undergo this

virtual double-occupation. The triplet states cannot occupy the same site with opposite spin, so
they do not gain this second-order energy lowering.

By second-order perturbation theory, the energy shift for the singlet relative to the triplet is

J =
t2

U/4
=

4 t2

U
.

Equivalently, one can show the low-energy effective Hamiltonian is the antiferromagnetic Heisenberg
coupling

Heff = J S1 ·S2, J =
4 t2

U
.

Thus the “superexchange” scale J emerges as the energy splitting between singlet and triplet
configurations, reflecting virtual hops suppressed by the large on-site repulsion.

Standard G0W0 (or any GW without vertex corrections) will not generate the J ∼ 4t2/U
singlet–triplet splitting in the large-U regime. Physically, superexchange is a two-particle correlation
effect: it comes from virtual hops that involve the simultaneous motion of two electrons (and their
spin-exchange), which shows up in a four-point vertex. GW only resums bubble diagrams inW and
neglects the vertex Γ that couples those bubbles to the fermions, so it cannot distinguish singlet
vs. triplet virtual processes and thus leaves the two low-energy levels degenerate.

To capture J you need to go beyond GW—e.g. include at least a ladder or Bethe–Salpeter
vertex in the self-energy (GWΓ, T-matrix, or an effective Heisenberg mapping)—so that the virtual-
hopping exchange channel is treated correctly.
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Figure 3: Two site Hubbard model at Quarter filling, U=10, t=1, spin up spectral function.
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Figure 4: Two site Hubbard model at Quarter filling, U=10, t=1 spin down spectral function.
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6 Implementation of the G0W0 Approximation

In this section we detail the Python code used to compute the G0W0 Green’s function and spectral
function for the two-site Hubbard dimer. We assume the tight-binding parameters ϵ, t, Hubbard
U , and a small broadening η are defined at the top of the script.

6.1 Non-interacting Green’s function G0(ω)

We work in the site basis {1, 2}. The molecular-orbital energies are ϵ± t, and

G0(ω) =
∑
α=±

|ψα⟩⟨ψα|
ω − (ϵ+ α t) + iη

becomes in matrix form:

G0(ω) =

(
G00 G01

G01 G00

)
, G00 =

1
2

(
G+ +G−

)
, G01 =

1
2

(
−G+ +G−

)
,

where G± = 1/[ω − (ϵ± t) + iη]. In code:

Listing 1: Non-interacting Green’s function

1 def G0_matrix(omega):

2 ep1 , ep2 = epsilon - t, epsilon + t

3 Gp = 1.0/( omega - ep1 + 1j*eta)

4 Gm = 1.0/( omega - ep2 + 1j*eta)

5 G00 = 0.5*(Gp + Gm)

6 G01 = 0.5*( -Gp + Gm)

7 return np.array ([[G00 , G01],

8 [G01 , G00]], dtype=complex)

6.2 Analytic self-energies Σσ(ω)

Using the RPA-screened interaction in the one-shot G0W0 scheme, the self-energy for spin-up has
no Hartree term, while spin-down carries a static shift U/2. Defining

h =
√
(4t)2 + U2 ,

we implement:

Listing 2: GW self-energies from analytic formulas

1 def Sigma_up_matrix(omega):

2 pref = (U**2 * t) / (4*h)

3 pole1 = omega - (epsilon + t + h) + 1j*eta

4 pole2 = omega - (epsilon - t - h) - 1j*eta

5 s11 = pref *(1/ pole1 + 1/ pole2)

6 s12 = pref *(1/ pole1 - 1/ pole2)

7 return np.array ([[s11 , s12],

8 [s12 , s11]], dtype=complex)

9

10 def Sigma_down_matrix(omega):

11 vH = U/2

12 pref = (U**2 * t) / (4*h)
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13 pole1 = omega - (epsilon + t + h) + 1j*eta

14 pole2 = omega - (epsilon - t + h) + 1j*eta

15 s11 = vH + pref *(1/ pole1 + 1/ pole2)

16 s12 = pref *(1/ pole1 - 1/ pole2)

17 return np.array ([[s11 , s12],

18 [s12 , s11]], dtype=complex)

6.3 Dyson equation and spectral function

For each frequency value ω, we solve the Dyson equation

Gσ(ω) =
[
G−1

0 (ω) − Σσ(ω)
]−1

,

then extract the on-site spectral function

Aσ(ω) = − 1

π
Im Gσ,11(ω).

Listing 3: Dyson solve and spectral function

1 # Precompute inverse of G0 and allocate arrays

2 omega = np.linspace ( -10 ,10 ,2000)

3 A_up = np.zeros_like(omega)

4 A_down = np.zeros_like(omega)

5

6 for i, w in enumerate(omega):

7 G0 = G0_matrix(w)

8 G0_inv = np.linalg.inv(G0)

9

10 # Spin -up channel

11 S_up = Sigma_up_matrix(w)

12 G_up = np.linalg.inv(G0_inv - S_up)

13 A_up[i] = -1/np.pi * np.imag(G_up [0,0])

14

15 # Spin -down channel

16 S_down = Sigma_down_matrix(w)

17 G_down = np.linalg.inv(G0_inv - S_down)

18 A_down[i] = -1/np.pi * np.imag(G_down [0,0])

7 Limiting Cases in the G0W0 Approximation

7.1 Non-interacting limit (U → 0)

In the true non-interacting case the exact self-energy vanishes,

Σexact(ω) ≡ 0,

so G(ω) = G0(ω) has only the two molecular-orbital poles at ϵ0 ± t, each of weight 1/2. However,
in G0W0 the RPA polarizability

P (ω) ∝ 1

ω2 − (2t)2
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retains poles at ω = ±2t even for U → 0. Through

Σ(ω) = i

∫
G0(ω − ω′)W (ω′)

dω′

2π
,

with W = U + UPU + · · ·, these poles feed into Σ(ω) at ω = (ϵ0 ± t) ± 2t = ϵ0 ± 3t. Solving
the Dyson equation G−1 = G−1

0 − Σ yields zero-weight “satellite” poles at ϵ0 ± 3t, which formally
remain in GGW even though their spectral weight vanishes as ∼ U2 → 0.

Figure 5: Two site Hubbard model at Quarter filling, GW approximation U=0.001, t=1, spin up
and down spectral function.

7.2 Atomic limit (t → 0, finite U)

Spin-up channel in the atomic limit (t → 0) At quarter filling the dimer hosts a single
↑-electron and no ↓-electron. In the one-shot G0W0 approximation the spin-up self-energy splits
into

1. A Hartree term Σ↑
H = U n↓, which vanishes since n↓ = 0.

2. A dynamic term of order U2t/h, namely

Σ↑(ω) =
U2 t

4h

[
· · ·
]
,

which scales linearly with t. Hence as t→ 0, Σ↑(ω) → 0.
Consequently, for the ↑ spin one has exactly

Σ↑(ω) → 0 =⇒ G↑(ω) =
[
G−1

0 (ω)− Σ↑(ω)
]−1 → G0(ω),

which in the atomic limit reduces to the single-pole form

G0(ω) =
1

ω − ϵ+ iη
.
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This coincides with the exact atomic-limit Green’s function for the lone ↑ electron, so G0W0 repro-
duces the exact spin-up result as t→ 0.

Spin-down channel in the atomic limit (t → 0) In the one-shot G0W0 approximation the
spin-down self-energy decomposes into

• 1. A static Hartree shift
Σ↓
H = U n↑ = U · 1 = U,

but recall that in the standard G0W0 code we distribute this evenly over the two sites (or

equivalently subtract half in G−1
0 ), yielding an effective Σ↓

H = U
2 .

Why? In most GW implementations—whether for real materials or model Hamiltoni-
ans—the non-interacting Green’s function G0 is built from a mean-field Hamiltonian that
already contains the static Hartree (or Hartree–Fock) potential. The GW self-energy ΣGW =
ΣH +Σc is meant to correct beyond that reference, so one subtracts out (or “double-counts-
corrects”) any static piece already in G0.

– In our Hubbard-dimer code, G0 was defined from

H0 = −t
∑
⟨ij⟩

c†icj + ϵ
∑
i

ni

with no explicit Hartree term. Hence in the GW loop we must add back the full static
Hartree shift U n−σ.

– However, one often centers frequencies so that the chemical potential (or half the total
Hartree) sits at zero. Equivalently, you can absorb half of the static shift into a redef-
inition of G−1

0 , and let ΣH contribute only the excess U
2 (n−σ − 1). At quarter filling

(n↑ = 1, n↓ = 0), this gives

Σ↓
H = U · n↑ − U

2
· (1 + 0) =

U

2
.

– This “half-shift” convention is entirely analogous to how ab initio GW subtracts the
DFT exchange–correlation potential: ΣGW = ΣH + (Σc − V DFT

xc ).

• 2. A dynamic (frequency-dependent) part

Σ↓
c(ω) =

U2 t

4h

[
· · ·
]
, h =

√
(4t)2 + U2 −−→

t→0
U,

which vanishes linearly with t→ 0.

Hence in the limit t→ 0 one finds

Σ↓(ω) → U

2
,

so the GW Green’s function reduces to a single–pole form

G↓(ω) =
1

ω − (ϵ+ U
2 ) + iη

.
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By contrast, the exact atomic-limit solution for adding a ↓-electron to the one-electron ground
state yields two poles at ω = ϵ and ω = ϵ + U . Thus G0W0 (see fig 7 misses the correct two-
peak “Hubbard-band” structure, collapsing the spin-down channel to a single, half-shifted pole at
ϵ+ U/2.

Figure 6: Two site Hubbard model at Quarter filling, GW approximation, U=10, t=1 spin up and
down spectral function.
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Figure 7: Two site Hubbard model at Quarter filling, GW approximation, U=4, t=0.1 spin up and
down spectral function.

Origin of static vs. dynamic self-energy contributions The key distinction is that the
“static” Hartree terms arise from the instantaneous, local mean-field generated by a pure on-site
repulsion U , whereas the “dynamic” pieces involve virtual hops (amplitude t) and therefore carry
nontrivial frequency dependence:

• Hartree (static) term: Σσ
H = U n−σ comes from the first-order diagram in which an

electron of spin σ “sees” a frozen background charge n−σ. No energy is exchanged in this
process, so Σσ

H is independent of ω (static).

• Dynamic (frequency-dependent) terms: These first appear at second order in U and
require a virtual excitation—an electron must hop (amplitude t), pay the interaction cost U ,
then hop back. In diagrammatic language this is the bubble (or exchange) diagram which
carries internal propagators ∝ 1/(ω − energy). Because each virtual hop involves a factor of
t and introduces an energy denominator ω − . . ., these contributions depend nontrivially on
frequency and vanish as t→ 0.

• Scaling: - Hartree: ΣH ∝ U n, no ω. - Correlation: Σc ∝ U2 t/h with poles at ω ≈ ϵ±(t+h),
so limt→0Σc(ω) → 0 but ΣH remains finite.

Thus the pure-U piece is an instantaneous mean-field shift (static), while any nonzero t is required
to generate frequency-dependent (dynamic) self-energy structure.

8 Self-Consistent GW (scGW) for the Hubbard Dimer

One can extend the one-shot G0W0 scheme to a fully self-consistent GW by iterating both the
Green’s function and the RPA screening until convergence. In practice for the two-site dimer the
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steps are:

1. Initialize Set the zeroth-order Green’s function to the non-interacting one:

G(0)(ω) = G0(ω) .

2. Compute polarization Using the current G(n), form the RPA polarizability in the site basis

P
(n)
ij (ω) = − i

∑
σ

∫
dω′

2π
G

(n)σ
ij (ω + ω′)G

(n)σ
ji (ω′).

3. Update screened interaction Build the dynamical W via

W (n)(ω) = U + U P (n)(ω)U + · · · =
[
1− U P (n)(ω)

]−1
U.

4. Compute self-energy Convolve G(n) with W (n):

Σ
(n)σ
ij (ω) = i

∫
dω′

2π
G

(n)σ
ij (ω − ω′)W

(n)
ij (ω′).

5. Solve Dyson’s equation Obtain the next Green’s function:

G(n+1)(ω) =
[
G−1

0 (ω) − Σ(n)(ω)
]−1

.

6. Check convergence Stop when ∥G(n+1) − G(n)∥ or ∥Σ(n+1) − Σ(n)∥ falls below a chosen
tolerance.

Implementation notes.

• In the two-site model each of these objects (G,P,W,Σ) is a 2 × 2 matrix in site–space and
can be sampled on the same frequency grid.

• The RPA-polarizability integral can be carried out analytically for each ω (generalizing the
G0 formulas) or evaluated numerically by quadrature.

• Convergence is typically reached in a few (5–10) iterations for moderate U/t.

Limitations. Although scGW enforces consistency and conserves particle number and energy,
it still omits the vertex function Γ. Consequently phenomena requiring two-particle exchange
channels—such as the superexchange splitting J ∼ 4t2/U of the low-energy manifold—remain
absent even in the self-consistent solution.

Unphysical Relaxation in Self-Consistent GW In the two-site Hubbard dimer at quarter
filling, one-shot G0W0 with a static Hartree shift can sustain a spin-dependent spectrum, albeit ap-
proximate. However, when one enforces full self-consistency (scGW) without any vertex corrections,
the iterative Dyson loop treats both spin channels through the same RPA-screened interaction. As
a consequence, any seeded spin imbalance decays and the solution relaxes to a completely para-
magnetic state with G↑ = G↓. This unphysical collapse erases essential magnetic features—most
notably the spin-dependent Hartree shifts and the superexchange splitting J ∼ 4t2/U—and leads
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to spectral functions that are even more at odds with the exact dimer physics than the simpler
G0W0 approximation.

Also note that the code provided does not really converge, this is due t the non-variational
nature of GW. Unlike Hartree–Fock or DFT, GW is not derived from a minimum principle. The
self-consistency map

G(n) 7→ G(n+1) = (G−1
0 − Σ[G(n)])−1

need not be a contraction: multiple fixed points (paramagnetic, magnetic) can exist, and the
iteration can oscillate or lock into a limit cycle.

Figure 8: Two site Hubbard model at Quarter filling, U=4, t=1 spin up/down spectral function in
scGW.
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