
Hubbard Dimer Green’s Function

1 Hubbard Model: Green’s Function Calculation

To construct the one-electron Green’s function for a two-site Hubbard model (Hubbard Dimer), we
require the ground-state energies and wavefunctions for three scenarios:

1. N − 1 electrons (the vacuum, N = 0),

2. N electrons (one electron system, N = 1),

3. N + 1 electrons (two electrons system, N = 2).

1.1 Hamiltonian

The Hubbard model Hamiltonian for two sites, with hopping t, on-site interaction U , and orbital
energy ϵ, is given by:

Ĥ =− t
∑
σ

(c†1σc2σ + c†2σc1σ) (1)

+ U
2∑

i=1

ni↑ni↓ + ϵ
∑
iσ

niσ. (2)

1.2 Energies and States

Vacuum State (N = 0) The vacuum state |0, 0⟩ has energy:

EN−1 = 0. (3)

One Electron System (N = 1) The Hamiltonian matrix in the basis {|↑, 0⟩ , |0, ↑⟩} is:

H1e =

(
ϵ −t
−t ϵ

)
. (4)

Two Electron System (N = 2) The Hamiltonian matrix in the basis {|↑↓, 0⟩ , |0, ↑↓⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↑, ↑⟩ , |↓, ↓⟩}
is:

H2e =



2ϵ 0 −t −t 0 0
0 2ϵ −t −t 0 0
−t −t 2ϵ+ U 0 0 0
−t −t 0 2ϵ+ U 0 0
0 0 0 0 2ϵ 0
0 0 0 0 0 2ϵ

 . (5)
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2 Analytical Solution of the Two-Site Hubbard Model

The two-site Hubbard model Hamiltonian in second quantization is characterized by parameters:

ϵ (orbital energy), t (hopping parameter), U (onsite repulsion).

2.1 One-Electron Sector (N = 1)

The one-electron basis states are:
| ↑, 0⟩, |0, ↑⟩

The Hamiltonian matrix in this basis is:

H1e =

(
ϵ −t
−t ϵ

)
Diagonalizing this Hamiltonian, we obtain the eigenvalues:

E1 = ϵ− t, E2 = ϵ+ t

and corresponding eigenstates:

|ψ1⟩ =
1√
2

(
1
1

)
, |ψ2⟩ =

1√
2

(
−1
1

)
.

The eigenvalues and eigenstates for the one-electron sector are summarized in Table 1.

Table 1: One-electron sector eigenvalues and eigenstates
Eigenvalue Eigenstate Description

ϵ− t |↑,0⟩+|0,↑⟩√
2

Ground state (bonding)

ϵ+ t |↑,0⟩−|0,↑⟩√
2

Excited state (anti-bonding)

2.2 Two-Electron Sector (N+1 = 2)

In the two-electron sector, we choose the basis of six Slater determinants:

| ↑↓, 0⟩, |0, ↑↓⟩, | ↑, ↑⟩, | ↓, ↓⟩, | ↑, ↓⟩, | ↓, ↑⟩.

The Hamiltonian in this basis is:

H2e =



2ϵ+ U 0 0 0 −t −t
0 2ϵ+ U 0 0 t t
0 0 2ϵ 0 0 0
0 0 0 2ϵ 0 0
−t t 0 0 2ϵ 0
−t t 0 0 0 2ϵ
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Diagonalizing this Hamiltonian, we obtain the eigenvalues:

E1 = 2ϵ, (three-fold degeneracy)

E2 = 2ϵ+ U

E3 = 2ϵ+
U

2
− 1

2

√
U2 + 16t2

E4 = 2ϵ+
U

2
+

1

2

√
U2 + 16t2

and corresponding eigenstates (unnormalized):

|ψE=2ϵ⟩ :



0
0
1
0
0
0

 ,



0
0
0
1
0
0

 ,



0
0
0
0
−1
1



|ψE=2ϵ+U ⟩ :



1
1
0
0
0
0



|ψE=2ϵ+U
2
− 1

2

√
U2+16t2⟩ :



ϵ
t −

E3
2t

− ϵ
t +

E3
2t

0

0

1

1


, |ψE=2ϵ+U

2
+ 1

2

√
U2+16t2⟩ :



ϵ
t −

E4
2t

− ϵ
t +

E4
2t

0

0

1

1


We already did this in class, but lets instead write these expressed in a basis where the singlet

and triple sub-blocks are separated:

| ↑↓, 0⟩, |0, ↑↓⟩, | ↑, ↓⟩ − | ↓, ↑⟩√
2

,
| ↑, ↓⟩+ | ↓, ↑⟩√

2
, | ↑, ↑⟩, | ↓, ↓⟩

The eigenvalues and eigenstates for the two-electron sector are summarized in Table 2.
We define for convenience:

X =
U
2

t+

√(
U
2

)2
+ t2

These analytical expressions allow explicit calculation of the exact Green’s function via Lehmann’s
representation.
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Table 2: Two-electron sector eigenvalues and eigenstates
Eigenvalue Eigenstate Description

2ϵ+ U
2 −

√(
U
2

)2
+ 4t2

|↑↓,0⟩+|0,↑↓⟩+X
|↑,↓⟩−|↓,↑⟩√

2√
2+X2

Ground state (Singlet)

2ϵ+ U |↑↓,0⟩−|0,↑↓⟩√
2

Singlet excited state

2ϵ+ U
2 +

√(
U
2

)2
+ 4t2

|↑↓,0⟩+|0,↑↓⟩− 1
X

|↑,↓⟩−|↓,↑⟩√
2√

2+1/X2
Singlet excited state

2ϵ | ↑, ↑⟩ Triplet state (S = 1, Sz = +1)

2ϵ | ↓, ↓⟩ Triplet state (S = 1, Sz = −1)

2ϵ |↑,↓⟩+|↓,↑⟩√
2

Triplet state (S = 1, Sz = 0)

3 Exact Green’s Function Using the Lehmann Representation

3.1 Lehmann Representation

The exact single-particle Green’s function Gij(ω) is given by the Lehmann representation as:

Gijσ(ω) =
∑
m

⟨ψN
0 |ciσ|ψN+1

m ⟩⟨ψN+1
m |c†jσ|ψN

0 ⟩
ω − (EN+1

m − EN
0 ) + iη

+
∑
n

⟨ψN
0 |c†jσ|ψN−1

n ⟩⟨ψN−1
n |ciσ|ψN

0 ⟩
ω − (EN

0 − EN−1
n )− iη

.

Here:

• |ψN
0 ⟩: Ground-state wavefunction of the N -electron system with energy EN

0 .

• |ψN+1
m ⟩: Eigenstates of the (N + 1)-electron system with energies EN+1

m .

• |ψN−1
n ⟩: Eigenstates of the (N − 1)-electron system with energies EN−1

n .

• c†iσ, ciσ: Spin resolved electron creation and annihilation operators at site i.

• η: Small positive number ensuring causality.

3.2 Two-Site Hubbard Model: N=1 Case

We illustrate this explicitly for the Hubbard model with one electron on two sites.

Action of Creation and Annihilation Operators on the One-Electron Ground State

We start with the one-electron ground state (with spin up):

|ψN=1
0 ⟩ = 1√

2
(| ↑, 0⟩+ |0, ↑⟩) .

We need to evaluate the actions of creation and annihilation operators ciσ and c†iσ on this ground
state.
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Annihilation Operators: ciσ|ψN=1
0 ⟩ Annihilation of an electron on the single-electron states

gives the vacuum state or zero:

c1↑| ↑, 0⟩ = |0, 0⟩, c2↑|0, ↑⟩ = |0, 0⟩,

and
c2↑| ↑, 0⟩ = 0, c1↑|0, ↑⟩ = 0.

Thus:

c1↑|ψN=1
0 ⟩ = |0, 0⟩√

2
, c2↑|ψN=1

0 ⟩ = |0, 0⟩√
2
.

For spin down electrons (not initially present):

c1↓|ψN=1
0 ⟩ = 0, c2↓|ψN=1

0 ⟩ = 0.

Creation Operators: c†iσ|ψN=1
0 ⟩ Creation of an electron from a one-electron state yields two-

electron states:
For spin up:

c†1↑|ψ
N=1
0 ⟩ = c†1↑

(| ↑, 0⟩+ |0, ↑⟩)√
2

=
c†1↑| ↑, 0⟩+ c†1↑|0, ↑⟩√

2
.

Evaluate explicitly:

c†1↑| ↑, 0⟩ = 0, (Pauli principle: double occupation with same spin at same site)

c†1↑|0, ↑⟩ = −| ↑, ↑⟩, (anticommutation rule: fermionic exchange gives negative sign)

Thus we have clearly:

c†1↑|ψ
N=1
0 ⟩ = −| ↑, ↑⟩√

2
.

Similarly, for the second site:

c†2↑|ψ
N=1
0 ⟩ =

c†2↑| ↑, 0⟩+ c†2↑|0, ↑⟩√
2

=
| ↑, ↑⟩√

2
.

For spin down:

c†1↓|ψ
N=1
0 ⟩ = | ↑↓, 0⟩+ | ↓, ↑⟩√

2
, c†2↓|ψ

N=1
0 ⟩ = | ↑, ↓⟩+ |0, ↑↓⟩√

2
.

Summary

c1↑|ψN=1
0 ⟩ = |0, 0⟩√

2
, c2↑|ψN=1

0 ⟩ = |0, 0⟩√
2
,

c1↓|ψN=1
0 ⟩ = 0, c2↓|ψN=1

0 ⟩ = 0,

c†1↑|ψ
N=1
0 ⟩ = −| ↑, ↑⟩√

2
, c†2↑|ψ

N=1
0 ⟩ = | ↑, ↑⟩√

2
,

c†1↓|ψ
N=1
0 ⟩ = | ↑↓, 0⟩+ | ↓, ↑⟩√

2
, c†2↓|ψ

N=1
0 ⟩ = | ↑, ↓⟩+ |0, ↑↓⟩√

2
.
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4 Spin-Resolved Green’s Functions for the Two-Site Hubbard Model

To explicitly derive the spin-resolved one-particle Green’s function, we must separately consider
spin-up and spin-down contributions.

The Green’s function is given by the Lehmann representation as:

Gij,σ(ω) = G−
ij,σ(ω) +G+

ij,σ(ω),

with particle removal (hole) and particle addition parts defined as:

G−
ij,σ(ω) =

∑
n

⟨ψN=1
0 |c†iσ|ψN=0

n ⟩⟨ψN=0
n |cjσ|ψN=1

0 ⟩
ω − (EN=1

0 − EN=0
n )− iη

,

and

G+
ij,σ(ω) =

∑
n

⟨ψN=1
0 |ciσ|ψN=2

n ⟩⟨ψN=2
n |c†jσ|ψN=1

0 ⟩
ω − (EN=2

n − EN=1
0 ) + iη

.

4.1 Ground State for N=1 (One Electron)

The one-electron ground state is spin degenerate. Let us explicitly choose the spin-up ground state:

|ψN=1
0 ⟩ = 1√

2
(| ↑, 0⟩+ |0, ↑⟩) , EN=1

0 = ϵ− t.

4.2 Evaluation of Particle Removal (N=0)

The N = 0 vacuum state is |0, 0⟩ with energy EN=0 = 0. Then, particle removal for spin-up is:

c1↑|ψN=1
0 ⟩ = 1√

2
|0, 0⟩, c2↑|ψN=1

0 ⟩ = 1√
2
|0, 0⟩.

Thus,

G−
11,↑(ω) = G−

22,↑(ω) =
1
2

ω − (ϵ− t)− iη
,

and similarly,

G−
12,↑(ω) = G−

21,↑(ω) =
1
2

ω − (ϵ− t)− iη
.

For spin-down, we have no occupancy; hence, there is no particle removal contribution:

G−
ij,↓(ω) = 0.

4.3 Evaluation of Particle Addition (N=2)

Now we consider particle addition separately for spin-up and spin-down.
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Spin-Up Particle Addition: The relevant two-electron state contributing to spin-up addition
is the triplet state | ↑, ↑⟩ with energy 2ϵ.

This is the only state that can result from a spin up electron addition to the one electron ground
state

|ψN=1
0 ⟩ = 1√

2
(| ↑, 0⟩+ |0, ↑⟩) .

as shown here:

c†1↑|ψ
N=1
0 ⟩ = − 1√

2
| ↑, ↑⟩, c†2↑|ψ

N=1
0 ⟩ = 1√

2
| ↑, ↑⟩.

Hence,

G+
11,↑(ω) = G+

22,↑(ω) =
1
2

ω − (ϵ+ t) + iη
,

and cross terms are negative:

G+
12,↑(ω) = G+

21,↑(ω) = −
1
2

ω − (ϵ+ t) + iη
.

Spin-Down particle additionGij,↓(ω) The spin-down Green’s function explicitly contains con-
tributions from particle-addition terms only (as the particle removal term vanishes for spin-down).
It is expressed as:

Gij,↓(ω) = G+
ij,↓(ω),

with the general form (Lehmann representation):

G+
ij,↓(ω) =

∑
n

⟨ψN=1
0 |ci↓|ψN=2

n ⟩⟨ψN=2
n |c†j↓|ψ

N=1
0 ⟩

ω − (EN=2
n − EN=1

0 ) + iη
.

For our two-site Hubbard model, the relevant two-electron eigenstates with nonzero overlap
with the ground state of the one-electron sector |ψN=1

0 ⟩ = |↑,0⟩+|0,↑⟩√
2

are the three singlet states

explicitly derived previously:
1. Eigenvalues and states (previously derived)
- **Ground singlet**:

|ψN=2
g ⟩ =

|d, 0⟩+ |0, d⟩+X |↑,↓⟩−|↓,↑⟩√
2√

2 +X2
, EN=2

g = 2ϵ+
U

2
−

√(
U

2

)2

+ 4t2.

- **Singlet excited state 1**:

|ψN=2
s,1 ⟩ = |d, 0⟩ − |0, d⟩√

2
, EN=2

s,1 = 2ϵ+ U.

- **Singlet excited state 2**:

|ψN=2
s,2 ⟩ =

|d, 0⟩+ |0, d⟩ − 1
X

|↑,↓⟩−|↓,↑⟩√
2√

2 + 1/X2
, EN=2

s,2 = 2ϵ+
U

2
+

√(
U

2

)2

+ 4t2.

2. Explicit overlaps (Check!!):

7



- **Ground singlet** overlaps:

⟨ψN=2
g |c†1↓|ψ

N=1
0 ⟩ =

1− X√
2√

2(2 +X2)
, ⟨ψN=2

g |c†2↓|ψ
N=1
0 ⟩ =

1 + X√
2√

2(2 +X2)
.

- **Excited singlet 1** overlaps:

⟨ψN=2
s,1 |c†1↓|ψ

N=1
0 ⟩ = 1

2
, ⟨ψN=2

s,1 |c†2↓|ψ
N=1
0 ⟩ = −1

2
.

- **Excited singlet 2** overlaps:

⟨ψN=2
s,2 |c†1↓|ψ

N=1
0 ⟩ =

1 + 1
X
√
2√

2(2 + 1/X2)
, ⟨ψN=2

s,2 |c†2↓|ψ
N=1
0 ⟩ =

1− 1
X
√
2√

2(2 + 1/X2)
.

3. Explicit final analytical result:
Thus, the explicit final result for the spin-down Green’s function matrix is given by:

Gij,↓(ω) =
⟨ψN=1

0 |ci↓|ψN=2
g ⟩⟨ψN=2

g |c†j↓|ψ
N=1
0 ⟩

ω −
(
EN=2

g − EN=1
0

)
+ iη

+
⟨ψN=1

0 |ci↓|ψN=2
s,1 ⟩⟨ψN=2

s,1 |c†j↓|ψ
N=1
0 ⟩

ω −
(
EN=2

s,1 − EN=1
0

)
+ iη

+
⟨ψN=1

0 |ci↓|ψN=2
s,2 ⟩⟨ψN=2

s,2 |c†j↓|ψ
N=1
0 ⟩

ω −
(
EN=2

s,2 − EN=1
0

)
+ iη

,

where the denominators explicitly read:
- Ground singlet:

EN=2
g − EN=1

0 = ϵ+ t+
U

2
−

√(
U

2

)2

+ 4t2

- Excited singlet 1:
EN=2

s,1 − EN=1
0 = ϵ+ t+ U

- Excited singlet 2:

EN=2
s,2 − EN=1

0 = ϵ+ t+
U

2
+

√(
U

2

)2

+ 4t2

Thus, this is the fully explicit and correct analytical result for the spin-down Green’s function
Gij,↓.

—
Summary of explicit final result in compact form:

Gij,↓(ω) =
∑

n=g,s1,s2

⟨ψN=1
0 |ci↓|ψN=2

n ⟩⟨ψN=2
n |c†j↓|ψ

N=1
0 ⟩

ω − (EN=2
n − EN=1

0 ) + iη
,
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5 Physical Interpretation of the Green’s Function Poles and the
Spectral Function

5.1 Interpretation of the Poles of the Green’s Function

One can interpret the poles of the Green’s function in terms of a simple molecular orbital picture.
Consider the two-site Hubbard model, with single-particle orbital energies and hopping integrals
defining two molecular orbitals: the bonding orbital at energy ϵ0 − t and the antibonding orbital
at energy ϵ0 + t. In the ground state for the one-electron case (N = 1), the single spin-up electron
occupies the lower-energy bonding orbital.

For the non-interacting limit (U = 0), the possible electronic excitations correspond straight-
forwardly to either adding or removing electrons from these molecular orbitals:

• Removal of a spin-up electron from the occupied bonding orbital at ω = ϵ0 − t.

• Addition of a spin-down electron to the bonding orbital at ω = ϵ0 − t.

• Addition of spin-up or spin-down electrons to the unoccupied antibonding orbital at ω = ϵ0+t.

When the electron-electron interaction U is turned on, the single-particle picture changes sig-
nificantly:

• The pole corresponding to the addition of a spin-down electron to the originally bonding
orbital shifts to the energy

ω = ϵ0 + t+
U − c

2
, c =

√
U2 + 16t2.

This shift arises due to the electron-electron Coulomb repulsion U .

• The addition energy to the antibonding orbital splits into two distinct energies:

ω = ϵ0 + t and ω = ϵ0 + t+ U.

The presence of interaction lifts the degeneracy seen at U = 0, reflecting distinct possible
states of electron addition due to electron-electron repulsion.

• Furthermore, adding a spin-down electron may also excite the system into a higher-energy
configuration, generating a satellite peak at:

ω = ϵ0 + t+
U + c

2
.

Thus, the electron-electron interaction not only shifts existing poles but also splits and intro-
duces new satellite excitations, directly reflecting the correlated nature of the electron system.

5.2 Definition and Physical Meaning of the Spectral Function

The spectral function A(ω) is defined as:

A(ω) = − 1

π
Im [Tr(G(ω))] .

Physically, the spectral function describes the probability of adding or removing an electron at
a given energy. Peaks of A(ω) correspond directly to the excitation energies (poles of the Green’s
function) and can be measured experimentally through photoemission (electron removal) or inverse
photoemission (electron addition) spectroscopy.
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Connection to the Self-energy The Green’s function G(ω) is related to the non-interacting
Green’s function G0(ω) and the self-energy Σ(ω) through Dyson’s equation:

G(ω) =
[
G−1

0 (ω)− Σ(ω)
]−1

.

Hence, the spectral function explicitly depends on the self-energy via:

A(ω) = − 1

π
Im
[
Tr
([
G−1

0 (ω)− Σ(ω)
]−1
)]
.

5.3 Results in our numerical model ϵ = 0 and t = 1 and U = 2

For the two-site Hubbard model, the non-interacting (one-electron) Hamiltonian is given by:

H(1) =

(
ϵ −t
−t ϵ

)
,

with eigenvalues corresponding to bonding and antibonding molecular orbitals:

E
(1)
± = ϵ± t.

Choosing the parameters ϵ = 0 and t = 1, we have the molecular orbital energies:

E
(1)
+ = 1, E

(1)
− = −1.

For a system with a single electron (N = 1), the ground-state energy is thus:

EN=1
0 = −1,

with the electron occupying the lower-energy bonding orbital.

Two-electron energies (N = 2 sector) For the two-electron Hubbard dimer, the relevant
eigenvalues (with parameters ϵ = 0, t = 1, U = 2) are:

• Ground-state singlet:

EN=2
g =

U

2
−

√(
U

2

)2

+ 4t2 ≈ −1.236

• Trivial singlet/triplet states (no hopping due to symmetry):

EN=2
trivial = 2ϵ = 0

• Double-occupation state:
EN=2

double = 2ϵ+ U = 2

• Excited singlet:

EN=2
excited =

U

2
+

√(
U

2

)2

+ 4t2 ≈ 3.236

Thus, the two-electron energy spectrum is:

−1.236, 0, 2, 3.236.
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Poles of the interacting Green’s function The poles of the particle-addition Green’s function
are given by the excitation energies:

ω = EN=2
n − EN=1

0 .

Evaluating explicitly:

• Spin-up electron addition (initial state with one spin-up electron):

– Triplet state (spin-aligned electrons): EN=2
n = 0, pole at:

0− (−1) = 1

– Double occupation (localized two electrons on one site): EN=2
n = 2, pole at:

2− (−1) = 3

• Spin-down electron addition (initially one spin-up electron):

– Ground-state singlet: EN=2
n ≈ −1.236, pole at:

−1.236− (−1) = −0.236

– Trivial singlet state: EN=2
n = 0, pole at:

0− (−1) = 1

– Excited singlet state: EN=2
n ≈ 3.236, pole at:

3.236− (−1) = 4.236

5.4 Identification of Spectral Peaks in Numerical Calculations

Using the provided numerical code to compute A(ω) based on the self-energy derived from the
analytical Green’s function, one explicitly identifies peaks at the predicted excitation energies.
Specifically, the spectral function exhibits peaks at the energies:

ω = −0.236, 1, 3, 4.236,

consistent with the analytical Lehmann representation results derived above.

6 Evaluation of the GW approximation: N=1

6.1 Polarizability

We start with the definition of the polarization Pij(ω) within the Random Phase Approximation
(RPA):

Pij(ω) = −i
∫
dω′

2π

∑
σ,σ′

Giσ,jσ′(ω + ω′)Gjσ′,iσ(ω
′)

At quarter filling (N=1) in the Hubbard dimer, the non-interacting Green’s function is given

explicitly by the equations derived above for the spin-up block (G0↑
ij (ω)). Note that the polarization
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function P (ω) is constructed from products of single-particle Green’s functions G(ω). Each Green’s
function Giσ,jσ′(ω) describes the propagation of an electron from state jσ′ to state iσ.

Now, the polarization at this level of approximation (RPA, or Random Phase Approximation)
involves transitions where electrons do not flip their spins** during the excitation process, because
the the Coulomb interaction here

U
∑
i

ni↑ni↓,

does not couple different spins directly given that is diagonal in spin. As our N=1 electron is spin
up (our choice) the spin-down polarization is identically zero.

G0↑
ij (ω) =

(−1)i−j

2

(
1

ω − (ε0 + t) + iη
+

(−1)i−j

ω − (ε0 − t)− iη

)
Let’s first simplify and clearly rewrite this Green’s function in a simpler form:

G0↑
ij (ω) =

1

2

[
(−1)i−j

ω − (ε0 + t) + iη
+

1

ω − (ε0 − t)− iη

]

P ↑
ij(ω) = −i

∫
dω′

2π
G0↑

ij (ω + ω′)G0↑
ji (ω

′)

Considering explicitly the diagonal elements (for simplicity we start with i = j = 1):

P ↑
11(ω) = −i

∫
dω′

2π
G0↑

11(ω + ω′)G0↑
11(ω

′)

Expanding explicitly these Green’s functions:

P ↑
11(ω) = −i

∫
dω′

2π

1

4

[
1

ω + ω′ − ε0 − t+ iη
+

1

ω + ω′ − ε0 + t− iη

] [
1

ω′ − ε0 − t+ iη
+

1

ω′ − ε0 + t− iη

]
Multiplying these terms gives us four integrals, each of the type:

Iab(ω) = − i

4

∫
dω′

2π

1

ω + ω′ − Ea + iη

1

ω′ − Eb + iη′
,

with Ea, Eb being either ε0 + t or ε0 − t, and η, η′ → 0+ infinitesimal positive numbers.
These integrals can be solved explicitly by contour integration (closing the contour in the upper

or lower half-plane depending on the signs of the infinitesimal imaginary parts). Each integral picks
up a pole contribution from one of the Green’s functions.

For example, one of these integrals explicitly is:

I(ω) = − i

4

∫
dω′

2π

1

(ω + ω′)− (ε0 + t) + iη

1

ω′ − (ε0 − t) + iη

To evaluate this integral, we perform a contour integration in the complex ω′ plane, closing the
contour in the upper half-plane. This picks the pole at ω′ = ε0 − t:

I(ω) = − i

4

[
2πi

1

(ω + (ε0 − t))− (ε0 + t) + iη

]
1

2π
= −1

4

1

ω − 2t+ iη

Doing similar evaluations for all four terms, after careful algebra (note the cancellations between
symmetric terms), we end up with the very simple form:
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P ↑
11(ω) =

1

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
In a similar way, one finds that the off-diagonal terms (i ̸= j) have opposite sign due to the

factors (−1)i−j . Thus, one obtains:

P ↑
ij(ω) =

(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)
Final derived result:

P ↑
ij(ω) =

(−1)i−j

4

(
1

ω − 2t+ iη
− 1

ω + 2t− iη

)

6.2 Screened Coulomb Interaction W

The screened Coulomb interaction W (ω) in terms of the bare Coulomb interaction vc and the
polarizability P (ω) is obtained through the Dyson equation for W:

Wij,↑(ω) = vij +
∑
kl

vikPkl,↑(ω)Wlj,↑(ω),

where for the two-site Hubbard dimer model, the Coulomb interaction is given by:

vij = Uδij .

Thus, explicitly, the Dyson-like equation for the screened interaction W (ω) becomes:

Wij,↑(ω) = Uδij + U
∑
k

Pik,↑(ω)Wkj,↑(ω).

For two sites (1,2), explicitly writing this in matrix form:

(
W11,↑(ω) W12,↑(ω)

W21,↑(ω) W22,↑(ω)

)
= U

(
1 0

0 1

)
+ U

(
P11,↑(ω) P12,↑(ω)

P21,↑(ω) P22,↑(ω)

)(
W11,↑(ω) W12,↑(ω)

W21,↑(ω) W22,↑(ω)

)
.

This can be rearranged as:

[I− UP↑(ω)]W↑(ω) = UI,

where the identity I is the 2×2 identity matrix and P↑(ω) and W↑(ω) are the 2×2 polarization
and screened interaction matrices, respectively.

Solving for W↑(ω):

W↑(ω) = U [I− UP↑(ω)]
−1 .

Using the derived polarization function Pij,↑(ω)

Pij,↑(ω) =
(−1)i−j

2

(
1

ω − 2t+ iη
− 1

ω + 2t+ iη

)
.

Thus, the polarization matrix is explicitly given by:
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P↑(ω) =
1

2

(
1

ω − 2t+ iη
− 1

ω + 2t+ iη

)(
1 −1

−1 1

)
.

Define the scalar polarizability factor clearly:

P (ω) =
1

2

(
1

ω − 2t+ iη
− 1

ω + 2t+ iη

)
.

Then,

P↑(ω) = P (ω)

(
1 −1
−1 1

)
.

Thus, clearly:

W↑(ω) = U

[
I− UP (ω)

(
1 −1
−1 1

)]−1

.

We explicitly evaluate the inverse of the 2× 2 matrix:[
I− UP (ω)

(
1 −1
−1 1

)]
=

(
1− UP (ω) UP (ω)

UP (ω) 1− UP (ω)

)
.

The inverse of a general 2× 2 matrix

(
a b
c d

)
is:

1

ad− bc

(
d −b
−c a

)
.

Applying this explicitly, the determinant is:

(1− UP (ω))2 − (UP (ω))2 = 1− 2UP (ω).

Thus, explicitly:[
I− UP (ω)

(
1 −1
−1 1

)]−1

=
1

1− 2UP (ω)

(
1− UP (ω) −UP (ω)

−UP (ω) 1− UP (ω)

)
.

Therefore, the diagonal element W11,↑(ω) is explicitly:

W11,↑(ω) = U
1− UP (ω)

1− 2UP (ω)
.

Substituting the explicit form of P (ω)
Recall explicitly that we have:

P (ω) =
1

2

(
1

ω − 2t+ iη
− 1

ω + 2t+ iη

)
=

2t

(ω + iη)2 − (2t)2
.

Therefore, for example the explicit form for the screened Coulomb interactionW11,↑(ω) becomes:

W11,↑(ω) = U
1− 2tU

(ω+iη)2−(2t)2

1− 4tU
(ω+iη)2−(2t)2

.
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Note that this expression is different from the one in the paper (J. Chem. Phys. 131, 154111
(2009) ). The reason for it is that this result is the exact RPA result,

W (ω) =
U

1− UP (ω)

while in the paper they compute the second-order truncation of the series expansion:.

1

1− UP (ω)
= 1 + UP (ω) + U2P (ω)2 + U3P (ω)3 + . . .

6.3 Self energy Σ

We will use the screened Coulomb interaction Wij(ω), as given by the paper (second order expan-
sion)

Wij(ω) = Uδij + (−1)i−j U2t

ω2 − h2
,

where:

h =
√
(ϵ0 + t)2 + 4tU.

The GW approximation for the self-energy is defined explicitly as (for spin-resolved case):

Σijσ(ω) = i

∫
dω′

2π
Gijσ(ω + ω′)Wji(ω

′),

with G = G0 (non-interacting Green’s function) which is obtained from our previous calculation
of the full G setting U=0.

Substituting explicitly and performing the integral via contour integration (closing the integra-
tion path in the complex plane and using the residue theorem), one finds:

Σij↑(ω) =
U2t

4h

[
1

ω − (ϵ0 + t+ h) + iη
+

(−1)i−j

ω − (ϵ0 − t− h)− iη

]
.

For spin-down electrons, the explicit calculation is different, as the spin-down Green’s function
describes particle addition to a spin-up occupied system, thus including different poles.

Performing again the frequency integral explicitly, we derive equation (24) from the provided
paper:

Σij↓(ω) =
U

2
δij +

U2t

4h

[
1

ω − (ϵ0 + t+ h) + iη
+

(−1)i−j

ω − (ϵ0 − t+ h) + iη

]
.

The first term (U/2) is the static Hartree contribution to the self-energy, arising due to the
static Coulomb interaction with the spin-up electron already occupying one orbital.

7 Behavior of the GW Approximation in Two Limiting Cases

7.1 Non-Interacting Limit (U → 0)

When the on-site interaction U vanishes, the Hubbard model becomes a system of non-interacting
electrons. In this regime, the fully interacting Green’s function derived within GW reduces to the
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same poles and weights as the non-interacting (mean-field) theory. Concretely, some of the poles
in the GW solution coalesce exactly onto the usual bonding and antibonding energies,

ω = ϵ0 ∓ t,

reflecting that the self-energy corrections fade away as U → 0.
However, the GW scheme also generates a small number of additional poles (ω1

−, ω
2
+, ω

4
+), which

move to energies such as ϵ0 ± 3t.
Why? In the GW approximation, the Green’s function is given by the Dyson equation:

GGW(ω) = [G−1
0 (ω)− ΣGW(ω)]−1.

Here, the self-energy ΣGW depends on the screened Coulomb interactionW , which itself includes
many-body effects encoded through the polarization P .

Because of this additional complexity, the GW self-energy introduces extra frequency depen-
dence, creating additional poles in the Green’s function besides the simple non-interacting ones.

- The poles originally associated with many-body effects do not vanish immediately. Instead,
as U → 0, most poles collapse nicely onto the non-interacting solutions (ϵ0 ± t).

- However, certain additional poles generated by GW (ω1
−, ω

2
+, ω

4
+) do not converge exactly to

ϵ0 ± t. Instead, these special poles move towards:

ω = ϵ0 ± 3t

These particular poles do not match the non-interacting energies. These poles are shifted by
exactly ±2t away from the usual non-interacting bonding and antibonding energies (ϵ0 ± t). This
offset of 2t is significant because:

- In the two-site Hubbard dimer, the polarization function P (ω) (which determines the screen-
ing) has poles precisely at energy 2t.

- Physically, the polarization P (ω) describes electron-hole pair excitations. Thus, these ad-
ditional poles appearing at ϵ0 ± 3t can be viewed as **satellites**: they’re poles created by the
electron-hole excitations that GW treats explicitly via P (ω).

In other words, these extra GW poles are not simple single-particle excitations. Instead, they
correspond to the interaction of a single-particle excitation with an electron-hole pair excitation
(collective excitation). — What about the intensity (or weight) of these poles?

As U → 0:
- These satellite poles at ϵ0 ± 3t lose spectral weight and become infinitely weaker. This means

their intensity (amplitude) diminishes and eventually goes to zero.
- Hence, even though these poles mathematically remain present, they have zero measurable

impact on the physical single-particle spectrum.
The poles remain formally present because the GW approximation inherently includes screening

and polarization effects. Even if the strength of this effect (controlled by U) disappears, the
structure that GW creates (the mathematical form of the equations) remains. Thus, these poles
persist mathematically at those shifted positions but carry no physical weight.

This is a subtle artifact of the mathematical structure of the GW equations: a remnant of
many-body physics that vanishes as the interaction disappears.

7.2 Atomic Limit (t → 0)

A very different picture emerges when the hopping amplitude t is driven to zero, so each site
becomes isolated. In principle, the exact atomic-limit solution for the spin-down channel should
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exhibit peaks at ϵ0 and ϵ0 + U with equal spectral weight (since the added electron can find an
empty or occupied site). However, the GW approximation effectively treats the density as a classical
half-filling on each site for small t. Consequently, one finds that each spin-up pole converges onto
a single value ω = ϵ0 (giving the correct location but missing certain dynamical details). For the
spin-down poles, GW merges only two of them near ϵ0 with zero amplitude, while the other two
move around ϵ0+

U
2 with unequal weights. As a result, the characteristic splitting into ϵ0 and ϵ0+U

(each with 1
4 weight) is not reproduced within standard GW in the limit t→ 0.

This shortcoming can be seen by noting that, in the atomic limit, the GW self-energy for
the spin-down block becomes effectively static (just U

2 as a Hartree shift), missing the frequency-
dependent part that would produce an additional pole at ϵ0 +U . In contrast, the exact self-energy
in this limit contains a resolvent-like term that yields a genuine second peak. Thus, one concludes
that GW breaks down for strongly localized electrons: it does not generate a separate “empty-site
vs. occupied-site” splitting. Additional vertex corrections beyond the standard GW (ones that
introduce real frequency dependence in the self-energy) are needed to fix this atomic-limit problem.
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