
Chapter 12: GWA Calculations in Practice

1 Introduction

GW calculations have become an essential part of computational condensed-matter physics, widely
utilized for accurately predicting electronic properties such as band structures and spectral func-
tions. Implementing GW methods involves significant computational efforts and choices related to
approximations and numerical techniques. Initially, GW aimed at addressing electron correlations
beyond Hartree–Fock by incorporating the concept of screening. The pioneering works established
that correlation energies could be derived from the polarization response of the electron gas, no-
tably illustrated by Hedin’s seminal paper in 1965. Since then, practical GW methods have evolved
through substantial algorithmic improvements and the exponential growth of computational power.
Despite its success in improving Kohn–Sham density functional theory (DFT) bandgaps, GW cal-
culations remain theoretically intricate and computationally demanding, especially for complex
materials.

The GW method seeks accurate predictions and smaller error margins to become truly predic-
tive. The core ambiguity of GW calculations lies in determining precisely which Green’s function G
and screened interaction W should be used. This ambiguity is intrinsic to many-body perturbation
theory and requires thoughtful guidelines.

2 The Task: A Summary

The main objective of a GW calculation is computing the exchange-correlation self-energy:

Σxc(1, 2) = iG(1, 2)W (1+, 2) (1)

Typically, matrix elements of the self-energy are evaluated within a basis set of independent-
particle states:

Σxc,kℓ(t1, t2) = i
∑
ij

Gij(t1, t2)W
kℓ
ij (t

+
1 , t2) (2)

The screened interaction W is obtained by solving the Dyson equation for W :

W (r1, r2) = vc(r1, r2) +

∫
dr3dr4 vc(r1, r3)P (r3, r4)W (r4, r2) (3)

In the widely used Random Phase Approximation (RPA), the polarizability P is approximated
as:

P ≈ P0(r3, r4) = −i
∑
σ

Gσ(r3, r4)Gσ(r4, r3) (4)

When the bare Coulomb interaction is spin-independent and no spin–orbit or non-collinear
magnetism terms are present, the self-energy becomes spin-diagonal:

Σxc,σ = iGσW (5)
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In practice, calculations typically start from an initial guess, G0, derived from a static mean-
field calculation (often Kohn–Sham). The Dyson equation is then solved separately for each spin
component σ:

Gσ = G0
σ +G0

σ(Σxc,σ − vxc,σ)Gσ (6)

Here, vxc,σ represents the already included exchange-correlation potential, which must be sub-
tracted from the self-energy calculation to avoid double counting.

The frequency Fourier transform of the self-energy is given as:

Σxc,σ(r, r
′;ω) = lim

η→0+

i

2π

∫
dω′Gσ(r, r

′;ω + ω′)W (r, r′;ω′)eiηω
′

(7)

GW calculations thus follow these essential steps:

1. Determine the starting Green’s function, G0.

2. Calculate polarizability P from G0.

3. Solve the Dyson equation for W .

4. Compute the self-energy Σxc by the convolution of G and W .

5. Solve the Dyson equation or the quasi-particle equation to obtain updated Green’s functions
or quasi-particle energies:

(ĥ+Re Σ̂(εℓ))|ψℓ(εℓ)⟩ = εℓ|ψℓ(εℓ)⟩ (8)

The computational process involves careful consideration of spin structure, basis sets, and fre-
quency integration techniques, making GW calculations methodologically challenging yet highly
valuable for predicting and understanding electronic properties of materials.

3 Frequently Used Approximations

3.1 Building on a Single-Particle Green’s Function G0

In GW calculations, the exchange-correlation self-energy Σxc = iGW is constructed using a single-
particle Green’s function G0, typically derived from a mean-field approximation or a static self-
energy calculation. The Green’s function G0 is represented as:

Gσ
0 (r1, r2; z) = lim

η→0+

∑
ℓ

ψσ
ℓ (r1)ψ

σ∗
ℓ (r2)

z − εσℓ + iη sgn(εσℓ − µ)
, (9)

where ψσ
ℓ and εσℓ represent single-particle eigenfunctions and eigenvalues, respectively, and µ is

the chemical potential.
The next essential quantity is the irreducible polarizability P0, calculated from G0:

P0(r, r
′; z) =

∑
ijσ

(fiσ − fjσ)ψ
0∗
iσ (r)ψ

0
jσ(r)ψ

0
iσ(r

′)ψ0∗
jσ(r

′)

z − (ε0jσ − ε0iσ)
. (10)

From P0, the screened Coulomb interaction W0 and subsequently the self-energy Σxc = iG0W0

are obtained, known as the G0W0 approximation.
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3.1.1 Choice of Starting Hamiltonian ĥ

The quality and accuracy of G0W0 calculations significantly depend on the initial independent-
particle Hamiltonian ĥ selected. Ideally, the starting Hamiltonian should yield either a band struc-
ture or density very close to the quasi-particle results of the subsequent GW calculation, serving
as an approximate self-consistency condition. Typical choices include:

• Kohn–Sham Hamiltonian: Initially adopted in the earliest ab initio GW calculations,
the KS Hamiltonian—particularly within the local density approximation (LDA) or gener-
alized gradient approximation (GGA)—is frequently used due to its pragmatic convenience
and good density predictions. However, KS-LDA tends to underestimate quasi-particle band
gaps significantly (typically 50-100%), and the density might suffer from over-delocalization,
excess hybridization, and magnetic moment underestimation. Nevertheless, for simple semi-
conductors, KS wavefunctions remain good approximations for quasi-particle wavefunctions,
often with overlaps greater than 95%.

• Hartree–Fock Hamiltonian: Provides a conceptual advantage by assigning physically
meaningful eigenvalues directly linked to electron addition and removal energies through
Koopmans’ theorem. However, due to its significantly larger bandgap predictions, this Hamil-
tonian is recommended mainly for large-gap semiconductors and atomic systems where screen-
ing is modest.

• Generalized Kohn–Sham Hamiltonian: Extends the Kohn–Sham approach by including
non-local exchange potentials, particularly hybrid functionals. Such Hamiltonians maintain
exact exchange contributions and provide significantly improved band structures and ground-
state properties, making them suitable starting points for GW calculations, especially when
combined with range-separated hybrid functionals.

• DFT+U: Introduces an empirical gap of magnitude U between localized states, suitable
for systems with strongly correlated electrons such as transition-metal oxides or lanthanide
compounds. This practical approach provides a convenient yet semi-empirical starting point.

Each choice of Hamiltonian comes with its benefits and drawbacks, and the appropriate selection
depends significantly on the characteristics of the material under study and the computational
resources available.

3.2 Choice of the Screened Interaction W0

In the GW approximation (GWA), the screened Coulomb interaction W is typically calculated
within the Random Phase Approximation (RPA). However, alternative choices and refinements
beyond RPA are possible. The primary consideration for choosing W0 is linked to the potential
benefit from error cancellation between neglected vertex corrections in the polarizability P and the
self-energy Σxc. Often, RPA calculations using Kohn–Sham (KS) inputs provide a good approxi-
mation for the inverse dielectric function, yielding results close to experimental data. This makes
the KS-based RPA a strong candidate for W0.

To further refine W , one could employ time-dependent density functional theory (TDDFT) or
Bethe–Salpeter equation (BSE) methods, although the latter is typically computationally demand-
ing except for small systems.
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3.2.1 Plasmon Pole Models

A significant computational challenge in GWA is the frequency integration involved in calculating
W0. To simplify this, W0 can be represented approximately as a sum over discrete poles. Such a
representation transforms the self-energy calculation into a double sum over poles of G0 and W0.

Early GWA calculations approximated the imaginary part of W0 by a single-plasmon branch
characterized by a dispersion relation ωp(q). In crystals, this approach is motivated by the behavior
of the loss function −Im ϵ−1

G,G(q;ω), typically dominated by a single plasmon peak at low momentum
transfer.

The single-plasmon pole approximation is expressed as:

Im ϵ−1
GG′(q;ω) = −AGG′(q)

[
δ(ω − ωp

GG′(q)) + δ(ω + ωp
GG′(q))

]
, (11)

where ωp is the effective plasmon frequency and AGG′(q) is the strength.
Using the Kramers–Kronig relations, the real part of the inverse dielectric function is given by:

Re ϵ−1
GG′(q;ω) = δGG′ +

2

π

AGG′(q)ωp
GG′(q)

ω2 − [ωp
GG′(q)]2

. (12)

Parameters A and ωp can be determined through various fitting approaches. One commonly
used method involves fitting the inverse dielectric function along the imaginary axis at selected
frequencies, typically at ω = 0 and at a frequency of the order of the plasmon energy. This fitting
method is advantageous because it allows quick assessments of model reliability by varying the fit
frequency.

Extensions of the plasmon pole model to multiple poles are also possible through methods such
as the band Lanczos approach, providing higher precision at the cost of increased computational
effort.

4 Restricting Calculations to Quasi-Particle Properties

In many GW calculations, the primary interest lies in determining quasi-particle (QP) properties,
such as band structures and lifetime broadenings. For such purposes, the full self-energy Σ(ω),
which is generally non-hermitian and complex, is simplified to a real, energy-dependent approx-
imation. The resulting equation has the structure of a one-body Schrödinger equation for each
quasi-particle state ℓ: (

ĥ+Re Σ̂(εℓ)
)
|ψℓ(εℓ)⟩ = εℓ|ψℓ(εℓ)⟩. (13)

This quasi-particle equation, when solved near the Fermi level, provides sufficient information
for most practical GW band structure calculations.

4.1 Solving the Quasi-Particle Equation to First Order

For an appropriate initial Green’s function G0, solving the quasi-particle equation to first order
in the difference between the GW self-energy Σxc and the exchange-correlation potential vxc is
justified. The first-order corrected quasi-particle energies εℓ are given by:

εℓ = ε0ℓ + ⟨ψ0
ℓ |Σ̂xc(εℓ)− v̂xc|ψ0

ℓ ⟩, (14)

where |ψ0
ℓ ⟩ are eigenstates of the independent-particle Hamiltonian ĥ.
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4.2 Linearizing the Self-Energy

To simplify the evaluation, the self-energy Σxc(ω) can be linearly expanded around the initial
energies ε0ℓ . This yields the linearized quasi-particle equation:

εℓ = ε0ℓ + Zℓ⟨ψ0
ℓ |Σ̂xc(ε

0
ℓ )− v̂xc|ψ0

ℓ ⟩, (15)

where the renormalization factor Zℓ is defined by:

Z−1
ℓ = 1− ⟨ψ0

ℓ |
∂Σ̂xc

∂ω

∣∣∣∣
ε0ℓ

|ψ0
ℓ ⟩. (16)

The factor Zℓ, representing the weight of the quasi-particle in the spectral function, effectively
reduces the magnitude of the self-energy correction, stabilizing and simplifying the computational
treatment of the quasi-particle states.

5 Different Levels of Self-Consistency in GW Calculations

The standard GW approximation (GWA), specifically the G0W0 approach, relies on an initial
Green’s function G0 derived from a static mean-field approximation. However, G0W0 is inherently
dependent on the starting point and can exhibit significant limitations, such as:

• Dependence on initial Hamiltonian choice

• Violation of particle number conservation

• Poor satellite description

• Unphysical spectral functions due to improper gap representation

To mitigate these issues, various degrees of self-consistency have been introduced.

5.1 Alignment of the Chemical Potential

The simplest self-consistency step is aligning the chemical potentials between the initial Green’s
function G0 and the resulting GW calculation by introducing an energy shift ∆ε:

µ = µ0 +∆ε = µ0 +ΣkF (µ). (17)

The adjusted Green’s function becomes:

Gσ
0 (r1, r2; z) =

∑
n

ψnσ(r1)ψ
∗
nσ(r2)

z − ε0nσ −∆ε
, (18)

with the corresponding frequency shift in the self-energy:

Σ(z) → Σ(z −∆ε). (19)
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5.2 Z = 1 Approximation

By assuming each state undergoes a uniform shift ∆ε, one can simplify the self-consistency condition
by evaluating the self-energy without the renormalization factor Z:

εℓ = ε0ℓ + ⟨ψ0
ℓ |Σ̂(ε0ℓ )− v̂xc|ψ0

ℓ ⟩. (20)

This approximation avoids the detailed calculation of quasi-particle renormalization factors.

5.3 Self-Consistent Update of Quasi-Particle Energies

A more comprehensive approach involves updating quasi-particle energies iteratively, which adjusts
screening effects and typically increases the calculated gap closer to Hartree–Fock results. Such
updates are crucial for accurate spectral predictions, especially if significant reordering of states
occurs.

5.4 Self-Consistent COHSEX

For systems where Kohn–Sham wavefunctions differ significantly from quasi-particle wavefunctions,
self-consistency can be introduced using the static COHSEX approximation. COHSEX employs
a static self-energy constructed only from occupied states, simplifying the computational effort
compared to fully dynamical self-consistency.

5.5 Quasi-Particle Self-Consistent GW (QSGW)

The QSGW method constructs an optimized static, non-local Hamiltonian HQP , closely matching
the GW-derived quasi-particle eigenvalues and wavefunctions. The effective Hamiltonian is defined
as:

HQP =
1

2

∑
ij

|ψQP
i ⟩

[
ReΣij(ε

QP
i ) + ReΣij(ε

QP
j )

]
⟨ψQP

j |. (21)

QSGW generally provides improved predictions for quasi-particle energies and wavefunctions
compared to G0W0.

5.6 GW0 Approach

The GW0 approach performs full self-consistency in G while keeping W0 fixed. This method
conserves particle number and maintains better satellite spectra accuracy compared to fully self-
consistent GW. However, it leads to results closer to Hartree–Fock due to reduced screening.

5.7 Fully Self-Consistent GW

Fully self-consistent GW calculations iteratively solve the Dyson equation for both G andW . While
this method is essential for accurate total energy calculations, it may degrade spectral quality due
to inadequate treatment of vertex corrections.

5.8 Rules of Thumb

Practically, the choice of self-consistency depends on the targeted properties. GW0 with ”best
W” is often recommended for accurate spectra, combining realistic screening and correct analytical
properties. For total energies, fully self-consistent GW within RPA may offer preferable results.
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6 Frequency Integrations in GW Calculations

Frequency integrations represent one of the most challenging aspects of GW calculations due to the
presence of poles near the real axis. Various approaches to effectively carry out these integrations
are summarized here.

6.1 Calculation of P0

The irreducible polarizability P0 can be calculated via frequency Fourier transforms as:

P0(ω) = − i

2π
lim

η→0+

∑
σ

∫
dω′Gσ(ω + ω′)Gσ(ω

′)eiηω
′
, (22)

or for finite temperatures using Matsubara frequencies:

P0(zn) =
1

β

∑
m

∑
σ

Gσ(zm)Gσ(zn + zm). (23)

These equations simplify to known forms when using independent-particle Green’s functions.

6.2 Plasmon Pole Approximation

A simplified integration for the self-energy Σ involves approximating the screened Coulomb inter-
action W using plasmon poles, particularly useful for evaluating real parts of the self-energy near
the Fermi level. This approach significantly reduces computational complexity.

6.3 Full Frequency Integration

Direct numerical integration of the full frequency-dependent self-energy Σ(ω) on the real axis is
computationally demanding due to closely spaced poles. Alternatives to full real-axis integrations
include:

• Matsubara Frequencies: At non-zero temperatures, self-energy calculations are typically
performed using discrete Matsubara frequencies:

Σ(zn) = − 1

β

∑
m

G(zn − νm)W (νm). (24)

• Spectral Function Method: At zero temperature, exploiting the analytic structure of
Green’s functions leads to integration via spectral functions A(ω) and D(ω):

Σc(ω) =

∫ +∞

−∞
dω1

∫ ∞

0
dω2

A(ω1)D(ω2)

ω + (ω2 − iη)sgn(µ− ω1)− ω1
. (25)

• Contour Integration: Utilizing contour integration in the complex plane simplifies the
evaluation significantly:

Σc(ω) = − i

2π

∫ +i∞

−i∞
G(ω+z)Wp(z)dz+

∑
i

fi(r)f
∗
i (r

′)Wp(r
′, r, |εi−ω|−iη)[θ(µ−εi)θ(εi−ω)−θ(εi−µ)θ(ω−εi)].

(26)
This method is more reliable as it avoids double-frequency integration.
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• Analytic Continuation: Transitioning from imaginary-axis results to real-axis quantities
can be done through analytic continuation, often employing Padé approximants:

R(z) =

∑n
i=0 aiz

i∑m
j=0 bjz

j
, (27)

with appropriately chosen parameters to achieve desired precision near energy gaps.

6.4 GW Total Energy Calculations

Total energy calculations within GW methods involve an additional frequency integration, typically
via the Galitskii–Migdal formula:

E =
1

2β

∑
ℓσ

∑
ν

(ε0ℓσ + zν)Gℓℓσ(zν), for T ̸= 0, (28)

E =
1

2

∑
ℓσ

∫ µ

−∞
dω(ε0ℓσ + ω)Aℓℓσ(ω), for T = 0. (29)

Alternative evaluations using functional approaches, involving Matsubara frequencies and loga-
rithmic functionals, are also common, especially in comparison to simpler DFT-RPA calculations.

7 GW Calculations in a Basis

GW calculations involve both frequency and spatial integrations. While frequency integrations are
unique to many-body perturbation theory, spatial integrations share commonalities with standard
mean-field methods. This section focuses specifically on spatial integrations, emphasizing basis-set
approaches to solving GW equations.

7.1 Matrix Elements

GW equations are often solved using matrix formulations. Given a set of normalized basis functions
χm(r), independent-particle or quasi-particle wavefunctions can be expanded as:

ψiσ(r) =
∑
m

bmiσχm(r). (30)

The two-point matrix elements in a general basis are defined as:

Fn1n2 =

∫
dr1dr2χ

∗
n1
(r1)F (r1, r2)χn2(r2). (31)

Matrix elements in terms of independent-particle wavefunctions are given by:

Fij =

∫
dr1dr2ψ

∗
i (r1)F (r1, r2)ψj(r2). (32)

Four-point functions transform according to:

Fn1n2n3n4 =

∫
dr1dr2dr3dr4χ

∗
n1
(r1)χ

∗
n2
(r2)F (r1, r2, r3, r4)χn3(r3)χn4(r4). (33)

For the screened interaction W , we define matrix elements as:
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Wkiℓj =

∫
dr1dr3ψ

∗
k(r1)ψj(r1)W (r1, r3)ψℓ(r3)ψ

∗
i (r3). (34)

The self-energy matrix elements become:

Σxc,kℓ = i
∑
ij

GijW
ij
kℓ. (35)

7.2 Choice of the Basis

7.2.1 Plane Waves

Plane-wave bases are preferred for periodic systems due to computational convenience and diago-
nalization of the bare Coulomb interaction. Key integrals, such as the polarizability, are efficiently
computed using Fast Fourier Transforms:

ρ̃ijkσ(q +G) =
1√
Ω

∫
dr ψ∗

ikσ(r)ψjk+qσ(r)e
−i(q+G)r. (36)

7.2.2 Localized Orbitals

Localized-orbital bases (e.g., LCAO, LMTO, Gaussian orbitals) provide convenience in describing
core and semi-core electrons. These bases have proven successful historically for various materials,
especially those involving d and f electrons, as well as finite systems. Examples include the Linear
Muffin-Tin Orbital (LMTO) and Numeric Atom-Centered Orbital (NAO) bases.

7.3 Optimized Basis for Polarizability

To reduce computational demands, the polarizability P0 can be computed using an optimized
product basis derived from pairs of orbitals. This significantly reduces the computational overhead
by minimizing the number of required basis functions.

7.4 Basis for Self-Consistent Calculations

In self-consistent GW calculations, new quasi-particle wavefunctions are most conveniently ex-
pressed in the basis of eigenfunctions derived from the initial independent-particle Hamiltonian.
Typically, only a small subset of eigenfunctions is required since the self-energy mixing is limited
to a relatively small energy range and conserves crystal momentum.

8 Scaling and Convergence

8.1 The Coulomb Interaction

Careful treatment of the long-range Coulomb interaction is crucial in GW calculations. In plane-
wave calculations for finite systems, simulations typically employ a large periodically repeated
unit cell (supercell) containing the studied object surrounded by empty space. While ground-
state calculations of neutral systems without dipole moments easily handle supercells, excited-
state calculations suffer from convergence difficulties due to long-range interactions arising from
electron additions, removals, or dipole creation. To alleviate this problem and reduce computational
demands, modified Coulomb interactions cut off in real space can be employed.
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In extended systems, the steep reciprocal-space Coulomb interaction 4π/q2 presents similar is-
sues, necessitating fine q-meshes. An improved integration method uses two grids: a coarse grid for
density and dielectric functions, and a finer grid for the Coulomb interaction. This enhanced inte-
gration technique improves convergence for both periodic and finite systems, effectively managing
the divergence at q = 0.

8.2 Important Convergence Parameters

Spectroscopy calculations, including GW0 quasi-particle or spectral function computations, require
careful consideration of convergence parameters that differ significantly from ground-state calcula-
tions:

• k-points: While convergence is less stringent than optical calculations, rigorous testing re-
mains necessary due to pole integrations.

• Empty States: Convergence with empty states is typically slow, displaying an error scaling

approximately as E
−3/2
cut . Iterative inversion methods circumvent explicit summation over

bands, implicitly defining band numbers through Hamiltonian dimensions. Alternatively, the
effective energy technique (EET) employs a state-independent ”effective energy,” significantly
enhancing computational efficiency by utilizing closure relations.

• Number of Basis Functions: Practically, separate considerations for wavefunction expan-
sions and self-energy summations are beneficial. Smaller inverse dielectric function compo-
nents can suffice when crystal local field effects (LFE) are minimal, optimizing computational
efficiency.

8.3 Scaling of GW Calculations

Typical GW calculations employ spectral representations in plane-wave bases, with key computa-
tional steps exhibiting varied scaling behaviors:

• Calculation of ρ̃ using fast Fourier transforms scales as Nat ln(Nat).

• Polarizability matrix element calculations scale as N4
atN

2
k , simplifying to N2

at for smaller unit
cells.

• Single self-energy matrix elements scale as NqN
3
at or N

2
at in sufficiently small cells.

For large systems, significant scaling improvements are achievable by employing the nearsight-
edness principle, which assumes spatial localization of relevant quantities. Real-space methods,
such as the space-time approach, calculate Green’s functions directly, scaling as N2

at, and compute
polarizabilities from Green’s function products, achieving linear scaling in atom numbers.
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