
Chapter 12: GWA Calculations in Practice



Introduction

Importance of GW Calculations:

▶ Essential tool in computational condensed-matter physics.

▶ Predict electronic properties: band structures, spectral functions.

▶ Address electron correlations beyond Hartree–Fock using screening.



Introduction

Historical Context and Development:

▶ Originated from Hedin’s seminal paper (1965).

▶ Correlation energies derived from polarization response of electron gas.

▶ Significant computational advancements since initial development.

▶ Exponential growth of computational power boosted practical usage.



Introduction

Challenges and Ambiguities:

▶ GW methods remain theoretically intricate.

▶ Computationally demanding, especially for complex materials.

▶ Improved Kohn–Sham DFT bandgaps significantly.

▶ Core ambiguity: determining optimal Green’s function G and screened interaction
W .

▶ Intrinsic to many-body perturbation theory; careful considerations required.



The Task: A Summary

Main Objective:

▶ Compute exchange-correlation self-energy:

Σxc(1, 2) = iG (1, 2)W (1+, 2) (1)

▶ Matrix elements in independent-particle basis:

Σxc,kℓ(t1, t2) = i
∑
ij

Gij(t1, t2)W
kℓ
ij (t+1 , t2) (2)



The Task: A Summary

Screened Interaction W:

W (r1, r2) = vc(r1, r2) +

∫
dr3dr4vc(r1, r3)P(r3, r4)W (r4, r2) (3)

▶ Random Phase Approximation (RPA) for polarizability:

P ≈ P0(r3, r4) = −i
∑
σ

Gσ(r3, r4)Gσ(r4, r3) (4)



The Task: A Summary

Spin Considerations:

▶ If bare Coulomb interaction is spin-independent:

Σxc,σ = iGσW (5)

▶ Typically start from initial guess G0 (Kohn–Sham).

▶ Dyson equation for each spin component:

Gσ = G 0
σ + G 0

σ(Σxc,σ − vxc,σ)Gσ (6)

▶ vxc,σ: Exchange-correlation potential already included.



The Task: A Summary

Fourier Transform of Self-Energy:

Σxc,σ(r , r
′;ω) = lim

η→0+

i

2π

∫
dω′Gσ(r , r

′;ω + ω′)W (r , r ′;ω′)e iηω
′

(7)

Essential Steps of GW Calculation:

1. Determine initial Green’s function G0.

2. Calculate polarizability P from G0.

3. Solve Dyson equation for W .

4. Compute self-energy Σxc from G and W .

5. Solve Dyson/quasi-particle equation:

(ĥ + Re Σ̂(εℓ))|ψℓ(εℓ)⟩ = εℓ|ψℓ(εℓ)⟩ (8)



Building on Single-Particle Green’s Function G0

Concept and Importance:

▶ GW self-energy (Σxc = iGW ) constructed from single-particle Green’s function G0.

▶ G0 typically derived from mean-field approximation or static self-energy
calculation.



Building on Single-Particle Green’s Function G0

Representation of G0:

Gσ
0 (r1, r2; z) = lim

η→0+

∑
ℓ

ψσ
ℓ (r1)ψ

σ∗
ℓ (r2)

z − εσℓ + iη sgn(εσℓ − µ)
(9)

▶ ψσ
ℓ : Single-particle eigenfunctions.

▶ εσℓ : Eigenvalues.

▶ µ: Chemical potential.



Building on Single-Particle Green’s Function G0

Irreducible Polarizability P0:

P0(r , r
′; z) =

∑
ijσ

(fiσ − fjσ)ψ
0∗
iσ (r)ψ

0
jσ(r)ψ

0
iσ(r

′)ψ0∗
jσ (r

′)

z − (ε0jσ − ε0iσ)
(10)

▶ Essential for computing screened interaction W0.



Building on Single-Particle Green’s Function G0

G0W0 Approximation:

▶ Calculate screened interaction W0 from polarizability P0.

▶ Compute self-energy as Σxc = iG0W0.

▶ Common starting approximation in practical GW calculations.



Choice of Starting Hamiltonian ĥ

Importance:

▶ Critical to GW accuracy.

▶ Ideally, starting Hamiltonian approximates GW quasi-particle results.



Kohn–Sham Hamiltonian

Features:

▶ Common initial choice, particularly LDA or GGA.

▶ Provides good densities but underestimates band gaps (50-100%).

▶ Wavefunctions often good approximation (overlaps typically >95%).



Hartree–Fock Hamiltonian

Features:

▶ Physically meaningful eigenvalues (Koopmans’ theorem).

▶ Significant bandgap overestimation.

▶ Suitable mainly for large-gap semiconductors and atoms.



Generalized Kohn–Sham Hamiltonian (8/10)

Features:

▶ Includes non-local exchange potentials (hybrid functionals).

▶ Balances ground-state properties and improved band structures.

▶ Popular choice for accurate GW calculations.



DFT+U Method

Features:

▶ Empirical approach adding gap magnitude U.

▶ Practical for strongly correlated materials (transition-metal oxides, lanthanides).

▶ Offers convenient starting point for complex correlated systems.



Summary of Hamiltonian Choices

Guidelines for selection:

▶ Choice strongly depends on materials and computational resources.

▶ Trade-off between computational efficiency and physical accuracy.

▶ Kohn–Sham (LDA/GGA): pragmatic but underestimates gaps.

▶ Hartree–Fock: accurate energies, excessive gaps.

▶ Generalized Kohn–Sham (hybrid functionals): balanced accuracy.

▶ DFT+U: practical and semi-empirical for strongly correlated systems.



Which W0?

▶ GW screening often computed within RPA (Ch. 11).

▶ Replacing PRPA by P = P0 (vertex corrections) leaves formalism unchanged.

▶ Improvement depends on error cancellation between missing vertex corrections in
P and in Σxc .



Justification for DFT-RPA W0

▶ RPA screening with Kohn–Sham inputs yields ϵ−1 close to experiment.

▶ Partial error cancellation and accurate KS density underlie this success.

▶ Strong argument: use DFT-RPA as starting W0.

▶ Beyond-RPA improvements via TDDFT or BSE (Chs. 14.11, 15.3).



Discrete-Pole Representation of W0

A major challenge: frequency integration in G0W0. If

W0(ω) ≈
∑
s

( W p
s

ω − ωp
s
+

W p
s

ω + ωp
s

)
,

then self-energy becomes a double sum over poles of G0 and poles of W0 .



Plasmon Pole Model: Motivation

▶ Kramers–Kronig links real/imag parts of ϵ−1.

▶ Suffices to approximate imaginary part.

▶ Homogeneous electron gas: single-plasmon branch ωp(q) ≈ vFq/
√
3 + q2/4.

▶ Crystals: one dominant plasmon peak in loss function −Im ϵ−1
GG (q;ω) at small q.



Single-Plasmon Pole: Imaginary Part

Im ϵ−1
GG ′(q;ω) = −AGG ′(q)

[
δ(ω − ωp

GG ′(q)) + δ(ω + ωp
GG ′(q))

]
. (11)

▶ ωp
GG ′(q): effective plasmon frequency.

▶ AGG ′(q): plasmon strength.



Single-Plasmon Pole: Real Part

By Kramers–Kronig:

Re ϵ−1
GG ′(q;ω) = δGG ′ +

2

π

AGG ′(q)ωp
GG ′(q)

ω2 − [ωp
GG ′(q)]2

. (12)



Fitting Parameters: Static Limit

Parameters A and ωp can be determined by:

▶ Static limit ω = 0 and f -sum rule.

Offers simple analytic determination but may introduce rigid shifts.



Fitting Parameters: Imaginary-Axis Method

Alternative: fit ϵ−1(iω) along imaginary axis at frequencies 0 and i ω̃ (order of plasmon
energy).

▶ Yields better agreement with full-frequency RPA.

▶ Allows robustness checks by varying fit frequency.



Restricting Calculations to Quasi-Particle Properties

▶ In many GW calculations, the primary interest lies in determining quasi-particle
(QP) properties, such as band structures and lifetime broadenings.

▶ For such purposes, the full self-energy Σ(ω), which is generally non-hermitian and
complex, is simplified to a real, energy-dependent approximation.

▶ The resulting equation has the structure of a one-body Schrödinger equation for
each quasi-particle state ℓ



Quasiparticle Equations

(
ĥ + Re Σ̂(εℓ)

)
|ψℓ(εℓ)⟩ = εℓ|ψℓ(εℓ)⟩. (13)

This quasi-particle equation, when solved near the Fermi level, provides sufficient
information for most practical GW band structure calculations.



Solving the Quasi-Particle Equation to First Order

▶ For an appropriate initial Green’s function G0, solving the quasi-particle equation
to first order in the difference between the GW self-energy Σxc and the
exchange-correlation potential vxc is justified.

▶ The first-order corrected quasi-particle energies εℓ are given by:

εℓ = ε0ℓ + ⟨ψ0
ℓ |Σ̂xc(εℓ)− v̂xc |ψ0

ℓ ⟩, (14)

▶ |ψ0
ℓ ⟩ are eigenstates of the independent-particle Hamiltonian ĥ.



Linearizing the Self-Energy

▶ To simplify the evaluation, the self-energy Σxc(ω) can be linearly expanded
around the initial energies ε0ℓ .

▶ This yields the linearized quasi-particle equation:

εℓ = ε0ℓ + Zℓ⟨ψ0
ℓ |Σ̂xc(ε

0
ℓ )− v̂xc |ψ0

ℓ ⟩, (15)



Linearizing the Self-Energy

▶ The renormalization factor Zℓ is defined by:

Z−1
ℓ = 1− ⟨ψ0

ℓ |
∂Σ̂xc

∂ω

∣∣∣∣
ε0ℓ

|ψ0
ℓ ⟩. (16)

▶ The factor Zℓ, representing the weight of the quasi-particle in the spectral
function, effectively reduces the magnitude of the self-energy correction, stabilizing
and simplifying the computational treatment of the quasi-particle states.



Different Levels of Self-Consistency in GW Calculations

▶ The standard GW approximation (GWA), specifically the G0W0 approach, relies
on an initial Green’s function G0 derived from a static mean-field approximation.

▶ G0W0 is inherently dependent on the starting point and can exhibit significant
limitations, such as:
▶ Dependence on initial Hamiltonian choice
▶ Violation of particle number conservation
▶ Poor satellite description
▶ Unphysical spectral functions due to improper gap representation

▶ To mitigate these issues, various degrees of self-consistency have been introduced.



Alignment of the Chemical Potential

▶ The simplest self-consistency step is aligning the chemical potentials between the
initial Green’s function G0 and the resulting GW calculation by introducing an
energy shift ∆ε:

µ = µ0 +∆ε = µ0 +ΣkF (µ). (17)

▶ The adjusted Green’s function becomes:

Gσ
0 (r1, r2; z) =

∑
n

ψnσ(r1)ψ
∗
nσ(r2)

z − ε0nσ −∆ε
, (18)

▶ with the corresponding frequency shift in the self-energy:

Σ(z) → Σ(z −∆ε). (19)



Z = 1 Approximation

▶ By assuming each state undergoes a uniform shift ∆ε, one can simplify the
self-consistency condition by evaluating the self-energy without the
renormalization factor Z :

εℓ = ε0ℓ + ⟨ψ0
ℓ |Σ̂(ε0ℓ )− v̂xc |ψ0

ℓ ⟩. (20)

▶ This approximation avoids the detailed calculation of quasi-particle
renormalization factors.



Self-Consistent Update of Quasi-Particle Energies

▶ A more comprehensive approach involves updating quasi-particle energies
iteratively, which adjusts screening effects and typically increases the calculated
gap closer to Hartree–Fock results.

▶ Such updates are crucial for accurate spectral predictions, especially if significant
reordering of states occurs.



Self-Consistent COHSEX

▶ For systems where Kohn–Sham wavefunctions differ significantly from
quasi-particle wavefunctions, self-consistency can be introduced using the static
COHSEX approximation.

▶ COHSEX employs a static self-energy constructed only from occupied states,
simplifying the computational effort compared to fully dynamical self-consistency.



Quasi-Particle Self-Consistent GW (QSGW)

▶ The QSGW method constructs an optimized static, non-local Hamiltonian HQP ,
closely matching the GW-derived quasi-particle eigenvalues and wavefunctions.
The effective Hamiltonian is defined as:

HQP =
1

2

∑
ij

|ψQP
i ⟩

[
ReΣij(ε

QP
i ) + ReΣij(ε

QP
j )

]
⟨ψQP

j |. (21)

▶ QSGW generally provides improved predictions for quasi-particle energies and
wavefunctions compared to G0W0.







GW0 Approach

The GW0 approach performs full self-consistency in G while keeping W0 fixed. This
method conserves particle number and maintains better satellite spectra accuracy
compared to fully self-consistent GW. However, it leads to results closer to
Hartree–Fock due to reduced screening.





Fully Self-Consistent GW

▶ Fully self-consistent GW calculations iteratively solve the Dyson equation for both
G and W .

▶ While this method is essential for accurate total energy calculations, it may
degrade spectral quality due to inadequate treatment of vertex corrections.

▶ Rules of Thumb:
▶ The choice of self-consistency depends on the targeted properties.
▶ GW0 with ”best W” is often recommended for accurate spectra, combining realistic

screening and correct analytical properties.
▶ For total energies, fully self-consistent GW within RPA may offer preferable results.



Frequency Integrations in GW Calculations

Frequency integrations represent one of the most challenging aspects of GW
calculations due to the presence of poles near the real axis. Here I present some of the
different approaches:



Calculation of P0

▶ The irreducible polarizability P0 can be calculated via frequency Fourier
transforms as:

P0(ω) = − i

2π
lim

η→0+

∑
σ

∫
dω′Gσ(ω + ω′)Gσ(ω

′)e iηω
′
, (22)

▶ For finite temperatures using Matsubara frequencies:

P0(zn) =
1

β

∑
m

∑
σ

Gσ(zm)Gσ(zn + zm). (23)

▶ These equations simplify to known forms when using independent-particle Green’s
functions.



Plasmon Pole Approximation

A simplified integration for the self-energy Σ involves approximating the screened
Coulomb interaction W using plasmon poles, particularly useful for evaluating real
parts of the self-energy near the Fermi level. This approach significantly reduces
computational complexity.



Full Frequency Integration (I)

Direct numerical integration of the full frequency-dependent self-energy Σ(ω) on the
real axis is computationally demanding due to closely spaced poles. Alternatives to full
real-axis integrations include:

▶ Matsubara Frequencies: At non-zero temperatures, self-energy calculations are
typically performed using discrete Matsubara frequencies:

Σ(zn) = − 1

β

∑
m

G (zn − νm)W (νm). (24)

▶ Spectral Function Method: At zero temperature, exploiting the analytic
structure of Green’s functions leads to integration via spectral functions A(ω) and
D(ω):

Σc(ω) =

∫ +∞

−∞
dω1

∫ ∞

0
dω2

A(ω1)D(ω2)

ω + (ω2 − iη)sgn(µ− ω1)− ω1
. (25)



Full Frequency Integration (II)
Other Alternatives to full real-axis integrations include:

▶ Contour Integration: Utilizing contour integration in the complex plane
simplifies the evaluation significantly:

Σc(ω) = − i

2π

∫ +i∞

−i∞
G (ω+z)Wp(z)dz+

∑
i

fi (r)f
∗
i (r

′)Wp(r
′, r , |εi−ω|−iη)[θ(µ−εi )θ(εi−ω)−θ(εi−µ)θ(ω−εi )].

(26)
This method is more reliable as it avoids double-frequency integration.

▶ Analytic Continuation: Transitioning from imaginary-axis results to real-axis
quantities can be done through analytic continuation, often employing Padé
approximants:

R(z) =

∑n
i=0 aiz

i∑m
j=0 bjz

j
, (27)

with appropriately chosen parameters to achieve desired precision near energy
gaps.



GW Total Energy Calculations

▶ Total energy calculations within GW methods involve an additional frequency
integration, typically via the Galitskii–Migdal formula:

E =
1

2β

∑
ℓσ

∑
ν

(ε0ℓσ + zν)Gℓℓσ(zν), for T ̸= 0, (28)

E =
1

2

∑
ℓσ

∫ µ

−∞
dω(ε0ℓσ + ω)Aℓℓσ(ω), for T = 0. (29)

▶ Alternative evaluations using functional approaches, involving Matsubara
frequencies and logarithmic functionals, are also common, especially in
comparison to simpler DFT-RPA calculations.



GW Calculations in a Basis

▶ GW calculations involve both frequency and spatial integrations.

▶ While frequency integrations are unique to many-body perturbation theory, spatial
integrations share commonalities with standard mean-field methods.

▶ This section focuses specifically on spatial integrations, emphasizing basis-set
approaches to solving GW equations.



Matrix Elements (I)

▶ GW equations are often solved using matrix formulations.

▶ Given a set of normalized basis functions χm(r), independent-particle or
quasi-particle wavefunctions can be expanded as:

ψiσ(r) =
∑
m

bmiσχm(r). (30)

▶ The two-point matrix elements in a general basis are defined as:

Fn1n2 =

∫
dr1dr2χ

∗
n1(r1)F (r1, r2)χn2(r2). (31)



Matrix Elements (II)
▶ Matrix elements in terms of independent-particle wavefunctions are given by:

Fij =

∫
dr1dr2ψ

∗
i (r1)F (r1, r2)ψj(r2). (32)

▶ Four-point functions transform according to:

Fn1n2n3n4 =

∫
dr1dr2dr3dr4χ

∗
n1(r1)χ

∗
n2(r2)F (r1, r2, r3, r4)χn3(r3)χn4(r4). (33)

▶ For the screened interaction W , we define matrix elements as:

Wkiℓj =

∫
dr1dr3ψ

∗
k(r1)ψj(r1)W (r1, r3)ψℓ(r3)ψ

∗
i (r3). (34)

▶ The self-energy matrix elements become:

Σxc,kℓ = i
∑
ij

GijW
ij
kℓ. (35)



Choice of the Basis: Plane Waves

Plane-wave bases are preferred for periodic systems due to computational convenience
and diagonalization of the bare Coulomb interaction. Key integrals, such as the
polarizability, are efficiently computed using Fast Fourier Transforms:

ρ̃ijkσ(q + G ) =
1√
Ω

∫
dr ψ∗

ikσ(r)ψjk+qσ(r)e
−i(q+G)r . (36)



Choice of the Basis: Localized Orbitals

Localized-orbital bases (e.g., LCAO, LMTO, Gaussian orbitals) provide convenience in
describing core and semi-core electrons. These bases have proven successful historically
for various materials, especially those involving d and f electrons, as well as finite
systems. Examples include the Linear Muffin-Tin Orbital (LMTO) and Numeric
Atom-Centered Orbital (NAO) bases.



Optimized Basis for Polarizability

To reduce computational demands, the polarizability P0 can be computed using an
optimized product basis derived from pairs of orbitals. This significantly reduces the
computational overhead by minimizing the number of required basis functions.



Basis for Self-Consistent Calculations

▶ In self-consistent GW calculations, new quasi-particle wavefunctions are most
conveniently expressed in the basis of eigenfunctions derived from the initial
independent-particle Hamiltonian.

▶ Typically, only a small subset of eigenfunctions is required since the self-energy
mixing is limited to a relatively small energy range and conserves crystal
momentum.



Scaling and Convergence: The Coulomb Interaction

▶ Careful treatment of the long-range Coulomb interaction is crucial in GW calculations.

▶ In plane-wave calculations for finite systems, simulations typically employ a large periodically
repeated unit cell (supercell) containing the studied object surrounded by empty space.

▶ While ground-state calculations of neutral systems without dipole moments easily handle
supercells, excited-state calculations suffer from convergence difficulties due to long-range
interactions arising from electron additions, removals, or dipole creation.

▶ To alleviate this problem and reduce computational demands, modified Coulomb interactions cut
off in real space can be employed.

▶ In extended systems, the steep reciprocal-space Coulomb interaction 4π/q2 presents similar
issues, necessitating fine q-meshes.

▶ An improved integration method uses two grids: a coarse grid for density and dielectric functions,
and a finer grid for the Coulomb interaction.

▶ This enhanced integration technique improves convergence for both periodic and finite systems,
effectively managing the divergence at q = 0.



Important Convergence Parameters

Spectroscopy calculations, including GW0 quasi-particle or spectral function computations, require
careful consideration of convergence parameters that differ significantly from ground-state calculations:

▶ k-points: While convergence is less stringent than optical calculations, rigorous testing remains
necessary due to pole integrations.

▶ Empty States: Convergence with empty states is typically slow, displaying an error scaling

approximately as E
−3/2
cut . Iterative inversion methods circumvent explicit summation over bands,

implicitly defining band numbers through Hamiltonian dimensions.

▶ Number of Basis Functions: Practically, separate considerations for wavefunction expansions
and self-energy summations are beneficial. Smaller inverse dielectric function components can
suffice when crystal local field effects (LFE) are minimal, optimizing computational efficiency.



Scaling of GW Calculations

▶ Typical GW calculations employ spectral representations in plane-wave bases, with
key computational steps exhibiting varied scaling behaviors:
▶ Calculation of ρ̃ using fast Fourier transforms scales as Nat ln(Nat).
▶ Polarizability matrix element calculations scale as N4

atN
2
k , simplifying to N2

at for
smaller unit cells.

▶ Single self-energy matrix elements scale as NqN
3
at or N

2
at in sufficiently small cells.

▶ For large systems, significant scaling improvements are achievable by employing
the nearsightedness principle, which assumes spatial localization of relevant
quantities.

▶ Real-space methods, such as the space-time approach, calculate Green’s functions
directly, scaling as N2

at, and compute polarizabilities from Green’s function
products, achieving linear scaling in atom numbers.


