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Introduction

> Mean-field methods replace an interacting many-body problem with a set of
independent-particle problems using an effective potential.

» The effective potential approximates interaction effects either on an average basis
or as an auxiliary system reproducing selected properties.

» These methods provide practical starting points for calculations and help interpret
interactions.

> Focus: Two key methods relevant to interacting electron systems:

1. Hartree—Fock approximation
2. Density Functional Theory (DFT)



Independent-Particle Approaches

There are two fundamental independent-particle approximations:

1. Hartree—Fock Approximation (HFA): The many-body wavefunction is
approximated by a single Slater determinant while retaining the full N-body
Hamiltonian.

2. Non-interacting Electron Methods: Use a local effective potential (often called
“Hartree-like") to describe the system.



Independent-Particle Approaches

There are two fundamental independent-particle approximations:

1. Hartree—Fock Approximation (HFA): The many-body wavefunction is
approximated by a single Slater determinant while retaining the full N-body
Hamiltonian.

2. Non-interacting Electron Methods: Use a local effective potential (often called
“Hartree-like") to describe the system.

Note: The challenge is defining the effective particles correctly.



Hartree—Fock Wavefunction

In the Hartree—Fock approximation the many-body wavefunction is assumed to be an
antisymmetrized product of single-particle orbitals:

Y1(r,o1) Yi(r,02)
WHF:W Qpz(rl:val) ¢2(f2:,02) . (4.1)

(Here, vi(r, o) is a product of a spatial orbital and a spin function. For more details on spatial and

spin symmetries, see [?, ?7].)



Hartree—Fock Total Energy

The total energy in the HF approximation is expressed as:

(Whe| A|WhE) = Z/d3r1/1”* 7@&,( )+ /d3rvext(r) n(r)+ Ey+Ex . (4.2)

» Vext(r) is the external potential.

» n(r) is the electron density.



Hartree and Exchange Energies

Hartree Energy

/
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Exchange Energy
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Hartree—Fock Equations

Minimizing the total energy with respect to the orthonormal orbitals ;,(r) yields:
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Hartree and Fock Potentials

Hartree Potential
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Non-local Fock Operator
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Additional Remarks on Hartree—Fock

> Excited States: Excitations can be formed by substituting ground-state orbitals
with higher-energy orbitals. Koopmans' theorem relates eigenvalues to electron
addition /removal energies.

> Self-Consistent Field (SCF) Calculations: Allow orbital relaxation by
performing separate SCF calculations for systems with N, N +1, or N —1
electrons.

» Second Quantization: The HF mean field emerges naturally from the
factorization of the two-body interaction operator.



Density Functional Theory (DFT)

» Density Functional Theory (DFT) is a theory of the interacting many-electron
system.

> It was originally developed in the context of quantum mechanics and later applied
to classical liquids (e.g., van der Waals, Cahn & Hilliard).

» In this course, we focus on aspects of DFT that relate conceptually to methods
such as Green's functions and quantum Monte Carlo, and on its role as a practical
starting point for many-body calculations.

» DFT inherently reflects the many-body nature of the problem and is pursued even
in the strong-interaction limit (e.g., where electrons form a Wigner crystal).

» The Kohn—Sham (KS) construction introduces an auxiliary system of
non-interacting electrons that reproduces the correct ground-state density.



Total Energy in DFT

The total energy of an interacting many-electron system can be written as

E=(A)=(T+ V) —|—/dr Vext (1) n(r) .

» Here, n(r) is the electron density.

» Minimizing over all normalized, antisymmetric many-body wavefunctions yields
the ground state with density ng and energy Eg.

» Since Ep is determined by the external potential vex:(r), each term is, in effect, a
functional of vey:.



General Definition of the Ground-State Energy

» The formalism of Density Functional Theory (DFT) allows us to define a ground-state energy
functional
E[Vext]

for any admissible external potential vex(r).
» What does this mean?
» For each external potential ve(r), the corresponding many-electron Hamiltonian

N
Fl:f-"'\? Zextrl

has a well-defined ground state and ground-state energy E.
» The energy functional E[vex] is a mapping from the entire function vex(r) to a
number, i.e., the ground-state energy.



Hohenberg—Kohn Energy Functional

Hohenberg and Kohn showed that the ground-state energy can be expressed as a
functional of the density:

Enk[n] = Fux[n] + / dr Vex(r) n(r), (4.15)
where
Fax[n] = (T) + (Vee)
is universal (i.e., independent of Vet).

» This result is an example of a Legendre transformation.

» It implies a one-to-one correspondence between n(r) and vey(r) for densities that
are v-representable.



Legendre Transformation in DFT

> Starting Point: The ground-state energy is originally expressed as a functional of the external
potential:

Elvext] = (W[vexe] | A[vest] W [vext]) -
» Conjugate Variables: The ground-state density is given by

_ 6E[Vgxt]

n(r) - 5Vext(r) I

showing that n(r) is conjugate to vex(r).

» Legendre Transform: By performing a Legendre transformation, we define the energy as a
functional of the density:

Evk[n] = Fux[n] + / dr vex(r) n(r),

where N .
Fuk[n] = (T) + (Vee)
is universal.

» Implication: The transformation is invertible (by the one-to-one relation between n and vex),
meaning the formalism applies to any external potential, with each vey yielding its own
ground-state energy.



v-Representability

v-Representability:

» A density n(r) is v-representable if there exists a local external potential vext(r)
such that n(r) is the ground-state density of the Hamiltonian

H=T+4 Ve +

Vext rl .

HMZ

» In the original HK proofs, only v-representable densities were considered.

» This condition is crucial to establish the one-to-one mapping between n(r) and
Vext(r).



N-Representability

» A density n(r) is N-representable if there exists an antisymmetric N-electron
wavefunction W such that

n(r) = N/ ’\U(n r2, .. .,I’N)|2 d|’2 “e . drN .

» The density must integrate to the correct number of electrons:

/n(r)dr:N.

P> N-representability ensures that the density corresponds to a physically realizable
many-electron state.

» This condition is more general than v-representability, which requires the density
to arise as the ground-state density for some local external potential.

» In DFT, the universal energy functional is defined only on the set of
N-representable densities.



Preliminaries: Electron Density

It can be proven (trivially) that for a set of indistinguishable independent particles the
electron density is given by:
2
n(r) =Y _Jei(r)|°.

occ i



Preliminaries: Electron Density

It can be proven (trivially) that for a set of indistinguishable independent particles the
electron density is given by:
2
= >_lwilr)

occ i

For electrons with spin:

n(r) = Z |¢la(r = ny(r) + ny(r),

OCCI (e

no(r) = > [ie(r)]*,

occ i

ne(r) = m(r) - ny(v).



Preliminaries: Local Potential Operator

Consider a general many-particle wavefunction W({s;}) and a local potential energy
operator:

\7 = Vext(r,‘) .

e

i=1

One can prove that:

(W|V|W) = /d3rn(r) Vet (F) .

» This relies on the fact that a local potential acts multiplicatively in the coordinate
representation.



Constrained Search: The Levy—Lieb Approach

To bypass the limitations of v-representability, Levy and Lieb introduced a two-step
constrained search:

Evi[n] = min (W[ T + Vee W) + / dr Vext () n(r) .

» The minimization is performed over all N-particle wavefunctions W that yield the
density n(r).
» This formulation does not require that the density be v-representable.

P Although this expression is concise, its practical evaluation is more complex than
solving the full quantum problem.



Hohenberg—Kohn Theorems: Statement

For a non-degenerate ground state, the following hold:

» One can define an energy functional of the electron density:
E[n] = F[n] + / d3r n(r) Vi (r),

where F[n] is universal.

» The variational principle states that
E[n] > EGSv

with equality if and only if n(r) = ngs(r).



First Hohenberg—Kohn Theorem

Rewriting Levy's expression:
Fln] = (WM T + Vee|Win) .
Then, by adding the external potential contribution:

Fln] + /d3rn(r) Vit (r) = (WM T 4 Ve + VWM"Y > Eiq .

» This inequality follows from the variational principle.



Second Hohenberg—Kohn Theorem

For the ground-state density ngs(r), we have:

Egs = <WGS‘7A—+ Vee + \7|WGS> < <wmin|-i‘—_|_ Vee + \A/’\Umin> )

nGs nGs

Since the external potential contribution is the same for both wavefunctions,

(Wes| T+ Vee|Was) = (WMIN T+ Ve [wminy |

nGs nGs

Hence,
Elns] = Flocs] + [ & nes(r) Vaa(r) = Ecs.



Summary

» DFT replaces the many-body wavefunction W with the electron density n(r),
reducing the complexity from a 3/N-dimensional function to a 3-dimensional
function.

» The Hohenberg—Kohn Theorems establish:

> A one-to-one mapping between n(r) and vex(r) (for v-representable densities).
» A variational principle: E[n] > Egs with equality for n(r) = ngs(r).

> The Levy—Lieb constrained search overcomes the v-representability restriction
by considering all N-representable densities.

» The Kohn—Sham construction introduces an auxiliary non-interacting system
that reproduces the true ground-state density.



Questions?

Any Questions?
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