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Introduction

▶ Mean-field methods replace an interacting many-body problem with a set of
independent-particle problems using an effective potential.

▶ The effective potential approximates interaction effects either on an average basis
or as an auxiliary system reproducing selected properties.

▶ These methods provide practical starting points for calculations and help interpret
interactions.

▶ Focus: Two key methods relevant to interacting electron systems:

1. Hartree–Fock approximation
2. Density Functional Theory (DFT)



Independent-Particle Approaches

There are two fundamental independent-particle approximations:

1. Hartree–Fock Approximation (HFA): The many-body wavefunction is
approximated by a single Slater determinant while retaining the full N-body
Hamiltonian.

2. Non-interacting Electron Methods: Use a local effective potential (often called
“Hartree-like”) to describe the system.

Note: The challenge is defining the effective particles correctly.
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Hartree–Fock Wavefunction

In the Hartree–Fock approximation the many-body wavefunction is assumed to be an
antisymmetrized product of single-particle orbitals:

ΨHF =
1√
N!

∣∣∣∣∣∣∣
ψ1(r1, σ1) ψ1(r2, σ2) . . .
ψ2(r1, σ1) ψ2(r2, σ2) . . .

...
...

. . .

∣∣∣∣∣∣∣ . (4.1)

(Here, ψi (r , σ) is a product of a spatial orbital and a spin function. For more details on spatial and

spin symmetries, see [?, ?].)



Hartree–Fock Total Energy

The total energy in the HF approximation is expressed as:

⟨ΨHF|Ĥ|ΨHF⟩ = −
∑
i ,σ

∫
d3r ψσ∗

i (r)
∇2

2
ψσ
i (r)+

∫
d3r vext(r) n(r)+EH +EX . (4.2)

▶ vext(r) is the external potential.

▶ n(r) is the electron density.



Hartree and Exchange Energies

Hartree Energy

EH =
1

2

∫
d3r d3r ′

n(r)n(r ′)

|r − r ′|
. (4.3)

Exchange Energy

EX = −1

2

∑
σ

∑
i ,j
occ

∫
d3r d3r ′ ψ∗

jσ(r
′)ψiσ(r

′)
1

|r − r ′|
ψjσ(r)ψ

∗
iσ(r) . (4.4)



Hartree–Fock Equations

Minimizing the total energy with respect to the orthonormal orbitals ψiσ(r) yields:[
−1

2
∇2 + vext(r) +

∑
j ,σj
occ

∫
d3r ′ ψ

σj∗
j (r ′)ψ

σj

j (r ′)
1

|r − r ′|

]
ψσ
i (r)

−
∑
j

occ

∫
d3r ′ ψσ∗

j (r ′)ψσ
i (r

′)
1

|r − r ′|
ψσ
j (r) = εσi ψ

σ
i (r) .

(4.5)



Hartree and Fock Potentials

Hartree Potential

vH(r) ≡
∑
j ,σj
occ

∫
d3r ′ ψ

σj∗
j (r ′)ψ

σj

j (r ′)
1

|r − r ′|
=

∫
d3r ′

n(r ′)

|r − r ′|
. (4.6)

Non-local Fock Operator

x̂σ(r , r
′) = −

∑
j

occ

ψσ∗
j (r ′)

1

|r − r ′|
ψσ
j (r) = −ρ(r , σ; r

′, σ)

|r − r ′|
. (4.7)



Additional Remarks on Hartree–Fock

▶ Excited States: Excitations can be formed by substituting ground-state orbitals
with higher-energy orbitals. Koopmans’ theorem relates eigenvalues to electron
addition/removal energies.

▶ Self-Consistent Field (SCF) Calculations: Allow orbital relaxation by
performing separate SCF calculations for systems with N, N + 1, or N − 1
electrons.

▶ Second Quantization: The HF mean field emerges naturally from the
factorization of the two-body interaction operator.



Density Functional Theory (DFT)

▶ Density Functional Theory (DFT) is a theory of the interacting many-electron
system.

▶ It was originally developed in the context of quantum mechanics and later applied
to classical liquids (e.g., van der Waals, Cahn & Hilliard).

▶ In this course, we focus on aspects of DFT that relate conceptually to methods
such as Green’s functions and quantum Monte Carlo, and on its role as a practical
starting point for many-body calculations.

▶ DFT inherently reflects the many-body nature of the problem and is pursued even
in the strong-interaction limit (e.g., where electrons form a Wigner crystal).

▶ The Kohn–Sham (KS) construction introduces an auxiliary system of
non-interacting electrons that reproduces the correct ground-state density.



Total Energy in DFT

The total energy of an interacting many-electron system can be written as

E = ⟨Ĥ⟩ = ⟨T̂ + V̂ee⟩+
∫

dr vext(r) n(r) .

▶ Here, n(r) is the electron density.

▶ Minimizing over all normalized, antisymmetric many-body wavefunctions yields
the ground state with density n0 and energy E0.

▶ Since E0 is determined by the external potential vext(r), each term is, in effect, a
functional of vext.



General Definition of the Ground-State Energy

▶ The formalism of Density Functional Theory (DFT) allows us to define a ground-state energy
functional

E [vext]

for any admissible external potential vext(r).

▶ What does this mean?

▶ For each external potential vext(r), the corresponding many-electron Hamiltonian

Ĥ = T̂ + V̂ee +
N∑
i=1

vext(ri )

has a well-defined ground state and ground-state energy E .
▶ The energy functional E [vext] is a mapping from the entire function vext(r) to a

number, i.e., the ground-state energy.



Hohenberg–Kohn Energy Functional

Hohenberg and Kohn showed that the ground-state energy can be expressed as a
functional of the density:

EHK[n] = FHK[n] +

∫
dr vext(r) n(r) , (4.15)

where
FHK[n] = ⟨T̂ ⟩+ ⟨V̂ee⟩

is universal (i.e., independent of vext).

▶ This result is an example of a Legendre transformation.

▶ It implies a one-to-one correspondence between n(r) and vext(r) for densities that
are v-representable.



Legendre Transformation in DFT
▶ Starting Point: The ground-state energy is originally expressed as a functional of the external

potential:
E [vext] = ⟨Ψ[vext]|Ĥ[vext]|Ψ[vext]⟩ .

▶ Conjugate Variables: The ground-state density is given by

n(r) =
δE [vext]

δvext(r)
,

showing that n(r) is conjugate to vext(r).

▶ Legendre Transform: By performing a Legendre transformation, we define the energy as a
functional of the density:

EHK[n] = FHK[n] +

∫
dr vext(r) n(r) ,

where
FHK[n] = ⟨T̂ ⟩+ ⟨V̂ee⟩

is universal.

▶ Implication: The transformation is invertible (by the one-to-one relation between n and vext),
meaning the formalism applies to any external potential, with each vext yielding its own
ground-state energy.



v -Representability

v-Representability:

▶ A density n(r) is v-representable if there exists a local external potential vext(r)
such that n(r) is the ground-state density of the Hamiltonian

Ĥ = T̂ + V̂ee +
N∑
i=1

vext(ri ) .

▶ In the original HK proofs, only v -representable densities were considered.

▶ This condition is crucial to establish the one-to-one mapping between n(r) and
vext(r).



N-Representability

▶ A density n(r) is N-representable if there exists an antisymmetric N-electron
wavefunction Ψ such that

n(r) = N

∫
|Ψ(r, r2, . . . , rN)|2 dr2 · · · drN .

▶ The density must integrate to the correct number of electrons:∫
n(r) dr = N .

▶ N-representability ensures that the density corresponds to a physically realizable
many-electron state.

▶ This condition is more general than v-representability, which requires the density
to arise as the ground-state density for some local external potential.

▶ In DFT, the universal energy functional is defined only on the set of
N-representable densities.



Preliminaries: Electron Density

It can be proven (trivially) that for a set of indistinguishable independent particles the
electron density is given by:

n(r) =
∑
occ i

∣∣ψi (r)
∣∣2 .

For electrons with spin:

n(r) =
∑

occ i , σ

∣∣ψiσ(r)
∣∣2 = n↑(r) + n↓(r),

nσ(r) =
∑
occ i

∣∣ψiσ(r)
∣∣2,

ns(r) = n↑(r)− n↓(r).
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Preliminaries: Local Potential Operator

Consider a general many-particle wavefunction Ψ({si}) and a local potential energy
operator:

V̂ =
N∑
i=1

Vext(ri ) .

One can prove that:

⟨Ψ|V̂ |Ψ⟩ =
∫

d3r n(r)Vext(r) .

▶ This relies on the fact that a local potential acts multiplicatively in the coordinate
representation.



Constrained Search: The Levy–Lieb Approach

To bypass the limitations of v -representability, Levy and Lieb introduced a two-step
constrained search:

ELL[n] = min
Ψ→n

⟨Ψ|T̂ + V̂ee |Ψ⟩+
∫

dr vext(r) n(r) .

▶ The minimization is performed over all N-particle wavefunctions Ψ that yield the
density n(r).

▶ This formulation does not require that the density be v -representable.

▶ Although this expression is concise, its practical evaluation is more complex than
solving the full quantum problem.



Hohenberg–Kohn Theorems: Statement

For a non-degenerate ground state, the following hold:

▶ One can define an energy functional of the electron density:

E [n] = F [n] +

∫
d3r n(r)Vext(r) ,

where F [n] is universal.

▶ The variational principle states that

E [n] ≥ EGS,

with equality if and only if n(r) = nGS(r).



First Hohenberg–Kohn Theorem

Rewriting Levy’s expression:

F [n] = ⟨Ψmin
n |T̂ + V̂ee |Ψmin

n ⟩ .

Then, by adding the external potential contribution:

F [n] +

∫
d3r n(r)Vext(r) = ⟨Ψmin

n |T̂ + V̂ee + V̂ |Ψmin
n ⟩ ≥ EGS .

▶ This inequality follows from the variational principle.



Second Hohenberg–Kohn Theorem

For the ground-state density nGS(r), we have:

EGS = ⟨ΨGS|T̂ + V̂ee + V̂ |ΨGS⟩ ≤ ⟨Ψmin
nGS

|T̂ + V̂ee + V̂ |Ψmin
nGS

⟩ .

Since the external potential contribution is the same for both wavefunctions,

⟨ΨGS|T̂ + V̂ee |ΨGS⟩ = ⟨Ψmin
nGS

|T̂ + V̂ee |Ψmin
nGS

⟩ .

Hence,

E [nGS] = F [nGS] +

∫
d3r nGS(r)Vext(r) = EGS .



Summary

▶ DFT replaces the many-body wavefunction Ψ with the electron density n(r),
reducing the complexity from a 3N-dimensional function to a 3-dimensional
function.

▶ The Hohenberg–Kohn Theorems establish:
▶ A one-to-one mapping between n(r) and vext(r) (for v -representable densities).
▶ A variational principle: E [n] ≥ EGS with equality for n(r) = nGS(r).

▶ The Levy–Lieb constrained search overcomes the v -representability restriction
by considering all N-representable densities.

▶ The Kohn–Sham construction introduces an auxiliary non-interacting system
that reproduces the true ground-state density.



Questions?

Any Questions?
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