
Mean Fields and Auxiliary Systems

1 Introduction

Mean-field methods replace an interacting many-body problem with a set of independent-
particle problems using an effective potential. This effective potential approximates the
effects of interactions either in an average sense or as an auxiliary system reproducing
selected properties of the interacting system. Such methods are essential in many-body
theory as they provide practical starting points for calculations and interpretations of
interactions.

Mean-field approximations are crucial in treating interacting, correlated electrons,
leading to simplified formulations. When appropriately chosen, these approximations
yield physically meaningful results and serve as a foundation for exploring correlation ef-
fects. The independent particles in a many-body problem may be the original particles or
solutions to mean-field equations optimized to facilitate solving the many-body problem.
The key challenge is defining the effective particles correctly.

This lecture focuses on two significant mean-field methods relevant to interacting elec-
tron systems: the Hartree-Fock approximation and Density Functional Theory (DFT).

2 Hartree–Fock Approximation

There are two basic independent-particle approaches: the Hartree–Fock approximation
to the interacting many-body system and the non-interacting electron methods in which
there is a local effective potential. The latter are often referred to as “Hartree-like,”
after D. R. Hartree who approximated the Coulomb interaction between electrons by an
average local mean-field potential. The approaches are similar in that each assumes the
electrons are uncorrelated except that they must obey the exclusion principle; however,
they are different in spirit and in their interpretation. Hartree-like theories modify the
original interacting many-body problem and treat a system of non-interacting electrons
in an effective potential. This approach was placed on a firm footing by Kohn and Sham,
who showed that one can define an auxiliary system of non-interacting electrons that, in
principle, leads to the exact ground-state density and energy.

The Hartree–Fock approximation (HFA) treats directly the system of interacting
fermions, with the approximation that the many-body wavefunction is restricted to be
an antisymmetrized uncorrelated product function that can be written as a single deter-
minant which explicitly respects the exclusion principle:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1, σ1) ψ1(r2, σ2) ψ1(r3, σ3) · · ·
ψ2(r1, σ1) ψ2(r2, σ2) ψ2(r3, σ3) · · ·
ψ3(r1, σ1) ψ3(r2, σ2) ψ3(r3, σ3) · · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣ . (1)
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Here, ψ denotes a single-particle “spin orbital.” For our purposes it is sufficient to
consider orbitals that are eigenfunctions of Ŝz with spin σ = ±1

2
quantized along an axis.

Then ψi(r, σ) is a product of a space orbital ψσ
i (r) and a spin function. The interaction

energy is calculated exactly for this wavefunction so that the resulting total energy is
variational, i.e., it is an upper bound to the true ground-state energy E0. Although the
HFA fails qualitatively for metals , and may have large quantitative errors in other cases,
it is widely used as the starting point for correlated many-body methods.

The total energy of a system of electrons in an external potential vext is

⟨ΨHF|Ĥ|ΨHF⟩ = −
∑
i,σ

∫
dr ψσ∗

i (r)
∇2

2
ψσ
i (r) +

∫
dr vext(r)n(r) + EH + Ex . (2)

Here, the first term is the kinetic energy of the independent particles,

EH =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (3)

is the Hartree contribution (i.e., the classical Coulomb energy), and

Ex = −1

2

∑
σ

∑
i,j
occ

∫
dr

∫
dr′ ψσ∗

j (r′)ψσ
i (r

′)
1

|r− r′|
ψσ
j (r)ψ

σ∗
i (r) , (4)

is the Fock (exchange) term.
Minimization of the total energy with respect to the orthonormal single-particle or-

bitals ψσ
i leads to the Hartree–Fock equations:[
−1

2
∇2 + vext(r) +

∑
j,σj
occ

∫
dr′ ψ

σj∗
j (r′)ψ

σj

j (r′)
1

|r− r′|

]
ψσ
i (r) (5)

−
∑
j

occ

∫
dr′ ψσ∗

j (r′)ψσ
i (r

′)
1

|r− r′|
ψσ
j (r) = εσi ψ

σ
i (r) .

In the first bracket the potential

vH(r) ≡
∑
j,σj
occ

∫
dr′ ψ

σj∗
j (r′)ψ

σj

j (r′)
1

|r− r′|
=

∫
dr′

n(r′)

|r− r′|
(6)

has the Hartree form of a local potential that acts equally on each orbital at point r.
It arises from the charge of all the electrons, including a spurious self-interaction that
is later canceled by the exchange term. The exchange part involves the non-local Fock
operator

x̂σ(r, r
′) = −

∑
j

occ

ψσ∗
j (r′)

1

|r− r′|
ψσ
j (r) = −ρ(r, σ; r

′, σ)

|r− r′|
, (7)

which acts as an integral operator on ψσ
i and couples only like spins. Equation (5)

represents a coupled set of integro-differential equations that can be solved exactly only
in special cases (e.g., spherically symmetric atoms or the homogeneous electron gas). In
general, one introduces a basis set so that the equations can be expressed in terms of
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expansion coefficients and basis function integrals. The HF ground-state wavefunction is
the determinant constructed from the N lowest-energy single-particle states.

Excited states can be represented by forming determinants from other combinations
of single-particle spin orbitals ψσ

i . The eigenvalues of the HF equations 5 correspond to
total energy differences (i.e., the energies required to add or remove an electron when all
other orbitals are frozen). This is known as Koopmans’ theorem. For a fixed number
of electrons, excitations (single, double, triple, etc.) can be approximated by replacing
ground-state orbitals with empty eigenstates from Eq. (5); the energy difference between
the excited state and the ground state then serves as a first approximation to the excita-
tion energy.

In practice, the absence of orbital relaxation in such a scheme often leads to sig-
nificant overestimations of addition, removal, and excitation energies. In contrast, self-
consistent field (SCF) calculations determine energy differences by performing separate
self-consistent calculations for the N , N + 1, or N − 1 electron systems, allowing all
orbitals to relax. For finite systems this approach can yield much more accurate results,
while for infinite systems the average relaxation in extended orbitals becomes negligible
so that SCF energy differences reproduce the eigenvalues.

In second quantization the origin of the HF “mean field” is particularly transparent.
One starts from the full expression for the two-body interaction operator:

V̂ee =
1

2

∑
m,m′

n,n′

∑
σ,σ′

vmm′nn′ c†mσ c
†
m′σ′ cn′σ′ cnσ , (8)

where m,m′, n, n′ = 1, . . . , Nstates refer to the independent-particle basis functions and
vmm′nn′ denotes the four-center matrix element of the interaction (which may be the bare
Coulomb interaction or an effective interaction U). The HFA corresponds to neglecting
correlation, so that the four operators in Eq. (8) are factorized into products of single-
particle operators:

c†mσ c
†
m′σ′ cn′σ′ cnσ →

(
< c†m′σ′ cn′σ′ > c†mσ cnσ − δσ σ′ < c†mσ cn′σ′ > c†m′σ′ cnσ

)
. (9)

In this factorization the first term gives rise to the Hartree potential (involving the density
operator), and the second term produces the exchange term that couples only like spins.
Note that for the case n′ = n, m′ = m, and σ = σ′ the unphysical self-interaction cancels
exactly.

In a plane-wave basis the Coulomb matrix elements are determined by the Fourier
components

vc(q) =
4π

q2
.

Then the interaction can be expressed as

V̂ee =
1

2

∑
q

∑
k,σ
k′,σ′

vc(q) c
†
k+q,σ c

†
k′−q,σ′ ck′σ′ ckσ , (10)

where q is the momentum transfer in the interaction.
For a lattice model the interaction is often most conveniently written in terms of site

operators. For example, in the one-band Hubbard model the Hartree–Fock approximation
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can be written as a sum over sites i,

U
∑
i

n̂i↑ n̂i↓ → U
∑
i

[
⟨n̂i↑⟩ n̂i↓ + n̂i↑ ⟨n̂i↓⟩

]
, (11)

where U is the on-site interaction and n̂iσ = c†iσ ciσ.

3 Density Functional Theory and the Kohn–Sham

Auxiliary System

Density functional theory (DFT) is a theory of the interacting many-electron system.1 In
this course we focus on aspects of DFT that are motivated by its conceptual relation to
later methods (e.g., Green’s functions and quantum Monte Carlo) and by its practical role
as a starting point for many-body calculations. The theory inherently reflects the many-
body nature of the problem—for example, DFT is pursued up to the strong-interaction
limit where electrons form a Wigner crystal. DFT is included in this “mean-field” chapter
because the Kohn–Sham (KS) construction of an auxiliary system provides a framework
in which the solution can be obtained using mean-field methods. Its detailed review here
is justified by its importance for quantitative many-body calculations and for subsequent
developments in the field.

3.1 Preliminaries

Density functional theory (DFT) provides the theoretical framework within which most
of the modern first-principles simulations of condensed matter and molecular physics
are performed. It has proven to be extremely successful, and is the basis of numerous
first-principles simulations in solids, liquids, atoms, and molecules, covering a variety of
contexts—from planetary sciences to biosciences and engineering (including, of course,
solids and materials).

We will see here the fundamentals of the theory, which is a ground state theory. (It was
generalized to equilibrium at finite temperatures and to dynamical, i.e., non-equilibrium,
situations; however, we will focus here on the original ground state theory.) The theory
rests on two important landmark papers. In the first one (P. Hohenberg and W. Kohn,
Phys. Rev., 1964) it was shown that when solving for the ground state, the quantum
mechanical variational principle for

⟨Ψ|Ĥ|Ψ⟩,

and, consequently, the ground state energy expressed as a functional of Ψ, can be replaced
by a variational principle for the energy as a functional of the particle density,

E
[
Ψ({si})

]
−→ E

[
n(r)

]
. (12)

This represents an enormous gain: instead of working with a function defined in a 3N -
dimensional space, we only need to handle a function in 3-dimensional space!

1Density functional theory for classical liquids was developed before the work of Hohenberg and Kohn.
Perhaps the first density functional theory was introduced by van der Waals in 1894 to describe capillary
action in liquids. This approach was later revived by Cahn and Hilliard in 1958.
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The second paper (W. Kohn and L. J. Sham, Phys. Rev., 1965) proposed a practical
way to use the former concept. It transformed the original problem into a mean-field-like
problem of non-interacting electrons moving in a suitably defined effective potential, as
illustrated in the figure below.

The theoretical framework does not imply approximations; it is exact for the electronic
subsystem within non-relativistic quantum mechanics. Practical calculations, however,
will be approximate.

We continue by assuming the adiabatic decoupling of nuclear and electron dynamics
following the Born–Oppenheimer approximation described earlier. That is, we solve the
electronic problem for nuclear positions fixed in space (and therefore as a function of
nuclear positions). These nuclei give rise to an external potential acting on the electrons.
Whether the system is a piece of DNA or a piece of metal, different systems will be
associated with a different external potential for the electrons.

3.2 The Hohenberg-Kohn Formulation and the Levy-Lieb con-
strained search

The total energy of an interacting many-electron system may be written as a sum of the
electron-only terms plus the effect2 of the external potential vext(r) due to the nuclei and
other sources:

E = ⟨Ĥ⟩ = ⟨T̂ + V̂ee⟩+
∫
dr vext(r)n(r) . (13)

This expression is defined for a range of many-body wavefunctions and densities n(r).
Minimizing over all normalized, antisymmetric wavefunctions yields the ground state with
density n0 and total energy E0. Since E0 is determined by the external potential vext(r),
each term in Eq. (13) for Ψ = Ψ0 is, in effect, a functional of vext (often denoted with
square brackets as in E[vext]). Notice that the quantum system’s state at any point r
depends on the potential everywhere.

Hohenberg and Kohn showed that the energy can also be expressed as a functional of
the density:

EHK[n] = FHK[n] +

∫
dr vext(r)n(r) , (14)

where
FHK[n] = ⟨T̂ ⟩+ ⟨V̂ee⟩

is universal (i.e., the same for all electron systems). This result, which is an example of a
Legendre transformation , implies a one-to-one relation between n and vext (for densities
that are v-representable). The ground state is found by minimizing EHK[n] over all such
densities.

The issue of v-representability is circumvented by the two-step constrained search for-
mulation introduced by Levy and Lieb. In this approach, one first defines a functional for
a given density n(r) by minimizing the expectation value of T̂+ V̂ee over all wavefunctions
Ψ that yield n(r):

ELL[n] = min
Ψ→n

⟨T̂ + V̂ee⟩+
∫
dr vext(r)n(r) . (15)

2It is assumed here that no magnetic field is present. (Zeeman terms can be added in spin-density
functional theory to describe magnetic systems
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(Any many-body wavefunctions yielding the same density are acceptable; for instance,
any plane wave eik·r produces a uniform density.) The second step is then to minimize
ELL[n] with respect to n(r). Both the HK and LL formulations lead to the same ground
state at the energy minimum.

3.3 Preliminary Exercises

In what follows we will use two formal results which are easy to prove (see appendix to
this chapter notes). Firstly, it is straightforward to show that for a set of indistinguishable
independent particles the particle density is given by

n(r) =
∑
occ i

∣∣ψi(r)
∣∣2 . (16)

This expression generalizes to electrons with spin as follows:

n(r) =
∑

occ i, σ

∣∣ψiσ(r)
∣∣2 = n↑(r) + n↓(r) , (11.3)

nσ(r) =
∑
occ i

∣∣ψiσ(r)
∣∣2 , (11.4)

and the spin density is defined as

ns(r) = n↑(r)− n↓(r) . (17)

Secondly, consider a general many-particle wave-function Ψ({si}), and a local poten-
tial energy operator (which is multiplicative in the local representation) of the form

V̂ =
N∑
i=1

Vext(ri) , (18)

where Vext(r) is a function of position in 3D and N is the number of particles. One can
prove that

⟨Ψ|V̂ |Ψ⟩ =
∫
d3r n(r)Vext(r) . (19)

3.4 The Hohenberg–Kohn Theorems

We do not follow the original Hohenberg–Kohn paper rather, we adopt the formulation of
Levy (see M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979)) as described in the review by
Jones and Gunnarsson [Rev. Mod. Phys. 61 692 (1989)]. Let us write the very general
many-electron Hamiltonian as

Ĥ = T̂ + V̂ + V̂ee , (20)

with

T̂ = −
N∑
i=1

1

2
∇2

i , (21)

V̂ =
N∑
i=1

Vext(ri) , (22)
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V̂ee =
∑
i<j

1

|ri − rj|
. (23)

For a non-degenerate ground state, we now state the following two results:

• Theorem I: For a many-fermion system under the influence of an external local
potential

V̂ =
N∑
i=1

Vext(ri),

an energy functional of the particle density can be defined as

E
[
n(r)

]
= F

[
n(r)

]
+

∫
d3r n(r)Vext(r) , (24)

where F [n(r)] is a universal functional of the density, and

E
[
n(r)

]
≥ EGS . (25)

• Theorem II:The inequality in the eq. above becomes an equality only when the
density is that of the ground state, i.e.,

E
[
nGS(r)

]
= EGS . (26)

These statements represent a variational principle equivalent to that of conventional
quantum mechanics, but with the enormous advantage that one only needs to vary and
optimize a function of three variables instead of a function defined in 3N dimensions.

3.5 On Density representability and locality

3.5.1 v-Representability in the Hohenberg–Kohn Theorems

In Density Functional Theory (DFT), one of the central ideas is that the ground-state
properties of an interacting many-electron system can be uniquely determined by its
electron density n(r). The original Hohenberg–Kohn (HK) theorems establish a one-to-
one correspondence between the ground-state density and the external potential vext(r)
(up to an additive constant). However, a key assumption in their proofs is that the
densities under consideration are v-representable.

A density n(r) is said to be v-representable if there exists some local external potential
vext(r) for which n(r) is the ground-state density of the Hamiltonian

Ĥ = T̂ + V̂ee +
N∑
i=1

vext(ri) .

That is, n(r) is v-representable if it can be obtained as the solution (i.e., the ground-state
density) of the Schrödinger equation for some local potential vext(r).
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3.5.2 What Does It Mean for a Potential to be Local?

A potential is said to be local if it acts multiplicatively in the position (coordinate)
representation. This means that, when expressed in the coordinate basis, the potential
operator does not mix different positions; instead, it acts directly by multiplication by a
function of position.

For example, consider a one-particle potential v(r). In the coordinate representation,
its action on a wave function ψ(r) is given by:

[v̂ψ](r) = v(r)ψ(r).

Notice that the operator v̂ is diagonal in the coordinate basis.
In the context of many-body systems, if the potential energy operator for N particles

can be written as

V̂ =
N∑
i=1

v(ri),

then each term v(ri) depends only on the position of the ith particle. When this operator
acts on a many-body wave function Ψ(r1, . . . , rN), we have:

[V̂Ψ](r1, . . . , rN) =
N∑
i=1

v(ri)Ψ(r1, . . . , rN).

This separability into a sum of one-particle potentials is what is meant by the potential
being local.

In contrast, a non-local potential does not act solely by multiplication at a single
point. Instead, it may involve an integral operator that couples the wave function at
different points. For instance, a non-local potential might be written as:

[V̂ ψ](r) =

∫
dr′ V (r, r′)ψ(r′),

where the value at r depends on ψ(r′) for other values of r′.

3.5.3 Importance in the Hohenberg–Kohn Theorems

The v-representability condition is crucial in the original HK proofs for two main reasons:

• One-to-One Mapping: The HK theorems rely on the assumption that the density
n(r) comes from some local potential. Under this assumption, they prove that if two
different external potentials yield the same ground-state density, then the potentials
can differ only by an additive constant. This one-to-one correspondence between
vext(r) and n(r) is fundamental to formulating DFT.

• Variational Principle: The ground-state energy is expressed as a functional of
the density,

E[n] = F [n] +

∫
dr vext(r)n(r) ,

and the proof that the minimum of E[n] equals the true ground-state energy EGS

relies on restricting the domain of n(r) to those densities that are v-representable.
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3.5.4 Limitations and Later Developments

Not every mathematically acceptable density (i.e., any nonnegative function that inte-
grates to the correct number of electrons) is v-representable. There may exist densities
that cannot be obtained as the ground-state density for any local potential. Consequently,
the original HK proofs apply only to the subset of densities that are v-representable.

Later developments, such as the constrained search formulation by Levy and Lieb,
relax this restriction by considering the broader concept of N-representability—requiring
only that the density originates from some antisymmetric N -electron wavefunction, re-
gardless of whether it is produced by a local potential. This generalization makes the
theory more practical and applicable to a wider range of systems.

3.6 The Levy Construction

Levy proposed the following functional for an N-representable particle density n(r) (i.e.,
one that can be obtained from an antisymmetric N -electron wave-function):

F
[
n(r)

]
= min

Ψ→n
⟨Ψ|T̂ + V̂ee|Ψ⟩ , (27)

where the minimization is performed over all N -particle wave-functions Ψ that yield
the density n(r). This concise expression means that F [n(r)] is given by the minimum
possible expectation value of T̂ + V̂ee among all N -particle wave-functions that produce
the specified density n(r). Although we have just written a concise definition for F [n(r)],
its practical evaluation is much more complex than solving the full quantum problem;
hence, it is used mainly to establish the theoretical framework.

3.7 Proof of First Theorem

Let us rewrite Eq. (27) in a more compact form:

F
[
n(r)

]
= ⟨Ψmin

n |T̂ + V̂ee|Ψmin
n ⟩ . (28)

Then, by adding the contribution from the external potential, we have

F
[
n(r)

]
+

∫
d3r n(r)Vext(r) = ⟨Ψmin

n |T̂ + V̂ee + V̂ |Ψmin
n ⟩ ≥ EGS , (29)

which is a direct consequence of the quantum mechanical variational principle (since the
right-hand side is the expectation value of the Hamiltonian for some trial many-electron
wave-function).

3.8 Proof of Second Theorem

To prove that
E
[
nGS(r)

]
= EGS , (30)

we start with the variational principle applied to the ground state:

EGS = ⟨ΨGS|T̂ + V̂ee + V̂ |ΨGS⟩ ≤ ⟨Ψmin
nGS

|T̂ + V̂ee + V̂ |Ψmin
nGS

⟩ . (31)
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Since the external potential operator V̂ depends only on the density, its expectation value
is the same for both wave-functions. Removing it from both sides, we obtain

⟨ΨGS|T̂ + V̂ee|ΨGS⟩ ≤ ⟨Ψmin
nGS

|T̂ + V̂ee|Ψmin
nGS

⟩ . (32)

By the very definition of Ψmin
nGS

, the reverse inequality must also hold; hence, we conclude
that

⟨ΨGS|T̂ + V̂ee|ΨGS⟩ = ⟨Ψmin
nGS

|T̂ + V̂ee|Ψmin
nGS

⟩ . (33)

It then follows that

EGS = ⟨ΨGS|T̂+V̂ee|ΨGS⟩+
∫
d3r nGS(r)Vext(r) = ⟨Ψmin

nGS
|T̂+V̂ee|Ψmin

nGS
⟩+

∫
d3r nGS(r)Vext(r) ,

(34)
or, equivalently,

E
[
nGS(r)

]
= F

[
nGS(r)

]
+

∫
d3r nGS(r)Vext(r) = EGS .

3.8.1 Conclusion

This Lecture has provided the formal framework for density functional theory in terms of
a variational principle on a functional that is known to exist, even though its explicit form
is unknown. The theory as presented is exact for the ground state of any many-particle
system, regardless of the degree of electron correlation.

For practical calculations, however, one must introduce approximations to the uni-
versal functional F [n(r)]. One line of research—called orbital-free density functional
theory—aims to develop approximate functionals for both the kinetic energy and the
electron–electron repulsion energy. Although these methods are computationally ex-
tremely efficient (since one deals only with a function in three dimensions), they have not
yet achieved the systematic accuracy needed for widespread use.

The contribution of Walter Kohn and Lu J. Sham (published one year after the work
of Hohenberg and Kohn) gave rise to the way DFT calculations are performed today. In
the next Lecture we will build on these ideas.
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