
Kohn-Sham Theory and Approximate
Functionals

1 Summary

The previous lecture sets the theoretical framework for density-functional
theory (DFT), but does not provide proposals for practical calculations. The
key paper in density-functional theory (W. Kohn and L. J. Sham, Phys. Rev.,
1965) proposed a practical way to use the former concept. Their proposal
can be seen in two steps:

• Firstly, it reduced the unknown bit to the quantitatively smallest size,
by rewriting the functional as:

E[n] = T0[n] +

∫
d3rn(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc[n], (1)

where T0[n] stands for the kinetic energy of a system of non-interacting
electrons of density n(r), Φ(r) is the Hartree potential, and Exc[n] is
the exchange-correlation energy.

• It transformed the original problem into a mean-field-like problem of
non-interacting electrons moving in a suitably defined effective poten-
tial:

V (r) = Vext(r) + Φ(r) +
δExc[n]

δn(r)
. (2)

It should be noted that a line of active research is the search for good
approximate forms of the universal functional F (or actually F-EH), removing
the Hartree component that can be computed easily). A main difficulty there
comes from the kinetic energy functional itself, which is very much affected
by, for instance, the shell structure of atoms. This is very easy to obtain
for independent electrons using explicit antisymmetric wave-functions, but
it is hard to recover as a functional of the density alone. This approach is
called orbital-free density-functional theory (as opposed to the Kohn-Sham
way, which involves orbitals).
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2 Derivation of Kohn-Sham Single Particle

Formalism

Following Jones and Gunnarsson, we take the functional as:

E[n] = T0[n] +

∫
d3rn(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc[n]. (3)

The variational principle applied to this functional yields:

δE[n]

δn(r)
=
δT0[n]

δn(r)
+ Vext(r) + Φ(r) +

δExc[n]

δn(r)
= µ. (4)

where µ is the Langrange multiplier associated with the constraint that the
particle number (integral of the density) is a given constant. Comparing
this with the equation corresponding to a system under an effective potential
V (r):

δE[n]

δn(r)
=
δT0[n]

δn(r)
+ V (r) = µ, (5)

it is easy to see that the two mathematical problems are identical, as long
as:

V (r) = Vext(r) + Φ(r) + Vxc[n](r), (6)

where we have defined the exchange-correlation potential as:

Vxc[n](r) =
δExc[n]

δn(r)
. (7)

3 Kohn-Sham Equations

The solution of the independent particle problem under the potential V (r)
is found by solving the Schrödinger equation:

(
−1

2
∇2 + V (r)

)
ψi(r) = ϵiψi(r), (8)

and obtaining the corresponding density:

n(r) =
∑

i

fi|ψi(r)|2. (9)

where fi is the occupation of the state (can be the FD distribution).
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The kinetic energy is computed as:

T0[n((r)] = −1

2

N∑

i

⟨ψi|∇2|ψi⟩ (10)

It seems contradictory to write it as a functional of the density when
we are calculating it from the single-particle ψ’s, and (as said before) we
do not have an explicit form that we can use to obtain it directly from the
density. But it is indeed such a functional, and a universal one (system in-
dependent) as well. This can be seen when using the Levy construction for
the independent-electron problem given by the Hamiltonian H = T + Vext.
Since there is no Vee term, Levy’s universal functional in this case is precisely
T0[n(r)]. This means that the T0 obtained above from the ψ’s is the actual
T0 value associated to that density by Levy’s functional. Given n(r), plug-
ging it into the functionals for the external-potential, Hartree and exchange-
correlation energies, we get everything we need to obtain the ground state
energy. And, actually, if we had the right Exc functional, both n(r) and
EGS would correspond to the exact many-electron solution. On the other
hand both the ψi(r) wavefunctions and their eigenvalues, represent auxiliary
magnitudes within the theory, with a priori no physical significance.

4 Exchange-Correlation Energy and Poten-

tial

Both Exc[n] and its functional derivative Vxc[n](r) are unknown. DFT implies
that there should be a functional form giving the exact exchange-correlation
energy, but we do not know its shape. The Kohn-Sham (KS) formalism al-
lows us to pack everything unknown into a quantitatively small term. Here
we will introduce the first approximations to the exact functional. From
here on we will be working with approximate theories based on (exact) DFT,
but with approximate Exc[n] functionals. A general point of order first. For
the exchange and correlation potential Vxc[n](r) the theory assumes a single-
particle local potential (remember that density-functional theory depends on
the external potential being local). Vxc is at the same time a function of
position and a functional of the density: the potential felt by a particle at
a given point in space depends on the shape of the particle density every-
where, Vxc[n](r). The first and most popular approximations are known as
LDA and GGA, standing for local-density and generalized-gradient-density
approximations, respectively. In a nutshell:

3



4.1 Local Density Approximation (LDA)

The first sensible approximation (in the Kohn-Sham paper itself) is consid-
ering that the potential at a given point in space depends on the density at
that point only. In that case, the homogeneous electron liquid (HEL, fully
interacting set of electrons in a flat external potential, otherwise called jel-
lium) becomes a natural reference, since there, the density at a point is the
same as anywhere else, a constant n(r⃗) = n

We can define the exchange-correlation energy density, ϵxc(n) as the
exchange-correlation energy per electron in jellium, which is a function of
electron density. We can then write a first approximation to Exc[n] as

ELDA
xc [n] =

∫
d3rn(r)ϵHEG

xc (n(r)). (11)

Actually, we do have an analytic expression for the exchange energy den-
sity, coming from solving the Hartree-Fock problem for the homogeneous
electron liquid. An LDA approximation for exchange can be then directly
written as:

ELDA
x [n] = −3

4

(
3

π

)1/2 ∫
d3rn(r)(4/3). (12)

as used by Slater before DFT existed, based on the exchange energy
expression of the HEL by Dirac. It is approximate, and therefore, the exact
cancellation of self- interaction that we had in Hartree-Fock is no longer
happening: LDA suffers from self-interaction error.

For the correlation energy, explicit many-electron wave function calcula-
tions were per- formed by D. M. Ceperley and B. J. Alder (Phys. Rev. Lett.
1980) for the homogeneous electron liquid using Quantum Monte Carlo for
different densities. The correlation energy density εc(n) was defined from
the QMC total energy, removing the other (known) terms, including the ex-
change term εx(n) implied above. The results were tabulated in that paper
as shown in the Table below.

The correlation energy function for constant density can be read (interpo-
lated) from that table. Various interpolation formulas have been proposed,
taking into account expected limiting behaviors. Probably the most widely
used in the one proposed by J. Perdew and A. Zunger (Phys. Rev. B, 1981)
proposed the parametrized functional form in terms of rs = (4/3πn)−1/3

εc(rs) =

{
Alogrs +B + Crslogrs +Drs rs ≤ 1

a/(1 + b1
√
rs + b2rs) rs > 1

(13)
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With the defined "x(n) and "c(n) we have a fully fledged LDA approximation to DFT.
We will see results later in the course, but we can advance that they are surprisingly
accurate. In the table below you see results for bond lengths in selected dimers. In
many ways and systems, they are better than Hartree-Fock’s, in spite of its also being
a mean-field-like solution of the correlated problem.

Bond length (Å) Experiment LDA Error

H2 0.74 0.77 0.03
B2 1.59 1.60 0.02
N2 1.10 1.10 0.00
F2 1.42 1.38 0.04

Na2 3.08 3.00 0.08
Al2 2.47 2.46 0.01
P2 1.89 1.89 0.01
S2 1.89 1.89 0.00
Cl2 1.99 1.98 0.01

Average 0.02

R G Parr & W Yang, Density-Functional Theory of Atoms and Molecules
Oxford University Press (1994)

The roundabout way to define the theory implies that the exchange term is approxi-
mate, only exact for jellium (while Hartree-Fock calculates it exactly for whatever sys-
tem), while an approximation to electronic correlation is included, which is completely
absent in Hartree-Fock. Importantly, however, the local character of the potential in
LDA makes it extremely easier to calculate on a computer as compared to non-local
Hartree-Fock, which tends to be a factor between 20 and 100 times more costly to cal-
culate.

EA Michaelmas 2024

Figure 1: From: D. M. Ceperley and B. J. Alder (Phys. Rev. Lett. 1980)

using known results for the high-density regime, and otherwise fitting
to the Ceperley- Alder QMC results (the low density part using a Padé
approximant on

√
rs).

With the defined εx(n) and εc(n) we have a fully fledged LDA approxi-
mation to DFT. They are surprisingly accurate. In the table below you see
results for bond lengths in selected dimers. In many ways and systems, they
are better than Hartree-Fock’s, in spite of its also being a mean-field-like
solution of the correlated problem.

The roundabout way to define the theory implies that the exchange term
is approximate, only exact for jellium (while Hartree-Fock calculates it ex-
actly for whatever system), while an approximation to electronic correlation
is included, which is completely absent in Hartree-Fock. Importantly, how-
ever, the local character of the potential in LDA makes it extremely easier to
calculate on a computer as compared to non-local Hartree-Fock, which tends
to be a factor between 20 and 100 times more costly to calculate.
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4.2 Generalized Gradient Approximation (GGA)

GGA improves upon LDA by including density gradients:

EGGA
xc [n] =

∫
d3rn(r)ϵxc(n,∇n). (14)

Why “generalized”? Although originally proposed in the paper by Kohn
and Sham, it was disappointingly inaccurate (in fact, LDA had been surpris-
ingly successful!). Perdew noticed that the sum rule for nxc integrating to
−1 had to be enforced. The LDA approximation was shown to fulfill it by
construction, but not any gradient expansion. Once noticed, the gradient
approximations fulfilling it were called GGAs. After efforts in defining good
GGAs, they have proved more accurate than LDA, and the extra computa-
tional cost is normally negligible. Problems with GGA, however:

• There is no natural reference for it, as there was for LDA. The homo-
geneous liquid does not help. This led to multiple proposals following
different philosophies. Nowadays there are several hundred different
GGAs around.
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12.5 Generalised gradient approximation, GGA

One can think of improving on LDA in an expansion form around the point considered
in LDA. The next term would include the gradients, as

EGGA
xc [n] =

Z
d3rn(r)"xc(n(r),rn(r))

Why “generalised"? Although originally proposed in the paper by Kohn and Sham,
it was disappointingly inaccurate (in fact, LDA had been surprisingly successful!).
Perdew noticed that the sum rule for nxc integrating to �1 had to be enforced. The
LDA approximation was shown to fulfil it by construction, but not any gradient ex-
pansion. Once noticed, the gradient approximations fulfilling it were called GGAs.
After efforts in defining good GGAs, they have proved more accurate than LDA, and
the extra computational cost is normally negligible.

Problems with GGA, however:

• There is no natural reference for it, as there was for LDA. The homogeneous
liquid does not help. This led to multiple proposals following different philoso-
phies. Nowadays there are several hundred different GGAs around.

• They do not seem to represent a step in a systematic (expansion) way to improve
on it.

A quite paradigmatic comparison of LDA versus GGA results is shown here:

EA Michaelmas 2024 Figure 2: LDA Vs GGA for Fe

• They do not seem to represent a step in a systematic (expansion) way
to improve on it.

A quite paradigmatic comparison of LDA versus GGA results is shown
here:

5 Spin Polarisation in DFT

The previous result presents results for ferromagnetic iron, that is, with a
net spontaneous magnetic moment per unit cell. Spontaneous refers to the
fact that it is magnetised even in the absence of an external magnetic field.

The mentioned magnetisation results from unbalanced electron spins. Up
to now we have considered electrons pairing up in single particle orbitals (in
any of the previous approximations), but there are solutions that do not
require that pairing, and that describe situations as the ferromagnetic iron
in the figure. Such solutions are called spin polarised.

Within DFT, spin polarised solutions can also be obtained with a rela-
tively straightforward generalisation of what has been studied so far. One
can re-state the DFT theorems for the energy as a function of the density of
spin-up electrons and that of spin-down electrons:

E[n↑, n↓] (15)

defined as ever, but in each case the single-particle wave-functions for each
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spin are allowed to be different and their magnitude squared are summed up
separately to obtain the separate densities.

That means that the usual particle density is

n(r) = n↑(r) + n↓(r), (16)

with

nσ(r) =
∑

i

|ψσ
i (r)|2. (17)

The so-called spin density is defined as

ns(r) = n↑(r)− n↓(r). (18)

6 Total Energy and Double Counting

Finally, the total energy for the ground state obtained once the KS equations
have been solved can be expressed as:

E = −1

2

∑

occ i

⟨ψi|∇2|ψi⟩+
∫
d3rn(r)

[
Vext(r) +

1

2
vH(r) + ϵxc(n(r),∇n(r))

]
,

(19)
or alternatively,

E =
∑

occ i

ϵi +

∫
d3rn(r)

[
ϵxc(n(r),∇n(r))− Vxc(n(r),∇n(r))−

1

2
vH(r)

]
.

(20)
The second equation shows the double-counting correction also needed in

DFT when computing the ground-state energy from the sum of the single-
particle energies of the “occupied” states. The double counting for the
Hartree term is also used in the HF solution (which also incorporates a
term for the exchange). Notice the 1/2 factor in front of the Hartree en-
ergies. It relates to the fact that every pair should be counted only once.
In basic electrostatics, given a distribution of charges, each charge feels the
electrostatic potential energy originated by the presence of the rest. The
electrostatic energy of the whole system is, however, not the sum over all
charges times their corresponding potential energies, since that would count
each interparticle interaction twice. For the same reason, the total energy
for a system of electrons according to Hartree or Hartree-Fock approaches is
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not just the sum of eigenvalues corresponding to the occupied eigenvectors,
but a term has to be subtracted to account for the double counting The one
for the exchange-correlation term corrects for the fact that the energy con-
tains the integral of the energy density, while the Kohn-Sham single-particle
Hamiltonian contains the exchange-correlation potential.

∑

i

ϵi (21)

is sometimes called the band energy (in solid-state contexts) since that
sum would represent the integration of the energy for the occupied bands.

7 The band gap Problem in DFT

The Kohn–Sham density functional theory is an in-principle-exact method
for determining the ground-state density and total energy. However, good
approximations to the density functional expression of other observables re-
main elusive. Despite this, KS orbitals and eigenvalues are often used as
independent-particle expressions for band structures or response functions.

7.1 Interpretation of Kohn–Sham Eigenvalues

Kohn–Sham eigenvalues are sometimes interpreted as total energy differ-
ences, particularly electron addition or removal energies. However, this is
only correct for the eigenvalue of the highest occupied state, which corre-
sponds to the ionization energy when the exact KS potential is used. This
result is sometimes called the “DFT Koopmans’ theorem.” Some important
observations are:

• KS band structures should not be interpreted as physical electron ad-
dition or removal energies.

• Approximate functionals introduce additional errors, particularly self-
interaction errors for localized states.

• The KS potential is a local and static potential, making it too inflexible
to describe all states accurately.

• Functionals such as DFT+U, SIC, and hybrid functionals improve
bandgap predictions because they incorporate non-local or state-dependent
potentials.

• KS eigenvalues match exact excitation energies in the one-electron
limit.
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7.2 Janak’s Theorem and Ionization Energy

Janak’s theorem relates the KS eigenvalues to energy derivatives concerning
fractional occupations:

∂E

∂fi
= ϵi. (22)

From this, one finds the meaning of the highest occupied eigenvalue, ϵN ,
by integrating:

EN − EN−1 =

∫ 1

0

dfN
∂E

∂fN
=

∫ 1

0

dfNϵN . (23)

Thus, the ionization energy satisfies:

I = EN−1 − EN = −ϵN . (24)

Similarly, for the electron affinity:

A = EN+1 − EN = ϵN+1. (25)

However, this reasoning does not generalize to all eigenvalues since ϵN+1

belongs to the (N + 1)-electron system.

7.3 The Bandgap Problem and the Derivative Discon-
tinuity

The fundamental bandgap of a material is defined in terms of total energy
differences as:

Eg = EN+1 − EN − (EN − EN−1). (26)

If we express this in terms of KS eigenvalues, we obtain:

Eg = ϵN+1(N + 1)− ϵN(N). (27)

However, in KS-DFT, the commonly used bandgap is computed as the
difference between the lowest unoccupied and highest occupied KS eigenval-
ues:

EKS
g = ϵN+1(N)− ϵN(N). (28)

Comparing this with the fundamental gap expression, we define the deriva-
tive discontinuity ∆:
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Eg = EKS
g +∆, (29)

where the derivative discontinuity is given by:

∆ = ϵN+1(N + 1)− ϵN+1(N). (30)

This discontinuity originates from the fact that the total energy E(N)
as a function of particle number N is not a smooth curve but consists of a
series of straight-line segments with slope discontinuities at integer values of
N . Mathematically, this means that:

∂E

∂N

∣∣∣∣
N−

̸= ∂E

∂N

∣∣∣∣
N+

. (31)

In a solid, where adding or removing an electron only changes the density
by an infinitesimal amount, this discontinuity manifests as a rigid shift in the
KS exchange–correlation potential across the system. This effect is crucial
because:

• The exact functional should exhibit a nonzero ∆, which significantly
affects the predicted bandgap.

• Standard functionals such as LDA and GGA do not include this dis-
continuity, leading to systematically underestimated bandgaps.

• Orbital-dependent functionals, such as exact exchange (EXX) and hy-
brid functionals, partially capture this effect, leading to improved bandgap
predictions.

7.4 Implications of the Derivative Discontinuity

The presence of the derivative discontinuity has major implications for den-
sity functional approximations:

1. Failure of Conventional Functionals: Standard approximations
like LDA and GGA are analytic functionals of the density and thus
do not exhibit the required non-analyticity at integer N . As a result,
these functionals predict bandgaps that are systematically too small.

2. Orbital-Dependent Functionals: Hybrid functionals and EXX func-
tionals, which include non-local exchange effects, capture part of the
derivative discontinuity and provide better bandgap predictions.
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The second equation shows the double counting correction also needed in DFT when
computing the ground state energy from the sum of the single-particle energies of the
“occupied" states. The double counting for the Hartree term is a seen in the previous
chapters. The one for the exchange correlation term corrects for the fact that the en-
ergy contains the integral of the energy-density, while the Kohn-Sham single particle
Hamiltonian contains the exchange correlation potential.

The term
NX

i

✏ni

is sometimes called the band energy (in solid state contexts) since that sum would rep-
resent the integration of the energy for the occupied bands.

12.8 Beyond GGA. Jacob’s ladder

Unlike some quantum-chemistry approaches, the route towards exact solutions is not
systematic. Approximate density functional theories are surprisingly accurate, and
offer the best balance of accuracy(predictive power) versus efficiency. But if you need
more accuracy, the path is not clear.

The aspiration of systematic improvement of accuracy is called Jacob’s Ladder in the
community, taken the biblical concept of a staircase to Heaven, as in this painting by
William Blake (British Museum)

However, the systematics is less systematic than one would wish. Here some of the
acronyms mentioned in the ladder figure. Many of them relate to initials of the authors
of the given papers.

• LDA: The Perdew Zunger (PZ) parametrisation is probably the most popular
LDA. There are others, but the differences are very minor since they all (or most)
refer to the QMC results of Ceperley and Alder.

EA Michaelmas 2024

Figure 3: Jacobs Ladder analogy in the XC functional world

3. Beyond KS-DFT: Many-body approaches such as GW corrections
explicitly account for ∆, leading to more accurate band structure pre-
dictions.

8 Beyond GGA: Jacob’s Ladder

Unlike some quantum-chemistry approaches, the route towards exact solu-
tions is not systematic. Approximate density functional theories are sur-
prisingly accurate, and offer the best balance of accuracy(predictive power)
versus efficiency. But if you need more accuracy, the path is not clear. The
aspiration of systematic improvement of accuracy is called Jacob’s Ladder in
the community, taken the biblical concept of a staircase to Heaven, as in this
painting by William Blake (British Museum)

However, the systematics is less systematic than one would wish. Here
some of the acronyms mentioned in the ladder figure. Many of them relate
to initials of the authors of the given papers.

1. LDA: The Perdew Zunger (PZ) parametrisation is probably the most
popular LDA. There are others, but the differences are very minor since
they all (or most) refer to the QMC results of Ceperley and Alder.

2. GGA: the lack of natural reference has resulted in many proposals (sev-
eral hun- dred so far), which do vary considerably, since they reproduce
different reference systems. It is worth distinguishing:

• From chemistry: Perceived as semi-empirical, versus the truly ab
initio quantum-chemical calculations, functionals were defined and
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fitted to reproduce properties of large sets of molecules obtained
from wave-function methods. A popular one within this line is
BLYP.

• From physics. Perceived as truly from first principles, the func-
tionals are defined using as many universal constraints from theory
and theoretical references as possible. PBE is the most popular
and probably successful one, together with its variants, revPBE,
RPBE, PBEsol, and WC (unfortunate initials).

–

3. MetaGGA: Next level in the derivative expansion, second derivatives.
But in- stead of the laplacian, using the kinetic-energy density (related).
SCAN is being quite successful lately.

4. Hybrids(hyperGGA):Very successful and particularly popular in quan-
tum chemistry, they consist of introducing a certain fraction α of the
true Hartree-Fock exchange energy (and potential) for the system, keep-
ing 1- α of the GGA exchange, with α varying between 20% and 30%,
depending on the flavor. For some properties the improvement over
GGAs performance is not surprising given that GGAs would overes-
timate while Hartree-Fock would underestimate, or vice- versa. The
calculations, however, become much more demanding, since the full
Hartree-Fock solution has to be found. The calculation of the exact
exchange of Hartree Fock is not based on the density, but requires the
single-particle wavefunctions. Hybrid functionals are, therefore, not
strictly density functionals. Density functional theory can, however,
be generalized to incorporate these type of functionals as shown in the
next section.

5. RPA and Beyond (response function-based functionals)

8.1 Hybrid Functionals

Hybrid functionals mix a portion of the exact Hartree-Fock (HF) exchange
energy with conventional exchange-correlation functionals from DFT:

Ehybrid
xc = αEHF

x + (1− α)EDFT
x + EDFT

c , (32)

where:

• EHF
x is the non-local exchange integral from HF theory,
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• EDFT
x is the exchange energy from a conventional DFT functional (e.g.,

LDA or GGA),

• EDFT
c is the correlation energy from a standard DFT approximation,

• α is a mixing parameter (typically 0.2–0.3).

8.1.1 Incorporation of Hybrid Functionals in DFT

In hybrid functionals, the exchange potential includes an explicit dependence
on the KS orbitals:

V HF
x (r, r′) = −

occ∑

i

ψ∗
i (r

′)ψi(r)
1

|r − r′| . (33)

The KS equation becomes:

(
−1

2
∇2 + Vext(r) + VH(r) + V hybrid

xc (r)

)
ψi(r) = ϵiψi(r), (34)

where
V hybrid
xc (r) = αV HF

x (r) + (1− α)V DFT
x (r) + V DFT

c (r). (35)

Generalized Kohn-Sham (GKS) Theory: To incorporate wavefunction-
dependent functionals, the Generalized Kohn-Sham (GKS) framework allows
functionals of the density matrix:

γ(r, r′) =
occ∑

i

ψ∗
i (r

′)ψi(r). (36)

Another approach is the Optimized Effective Potential (OEP) method,
which determines an effective local potential to approximate non-local ex-
change contributions.

8.1.2 Advantages and Limitations of Hybrid Functionals

• Advantages

– Improved Band Gaps: Mitigates the ”bandgap problem” in
standard DFT.

– Better Description of Localized Electrons: Useful for tran-
sition metals and rare-earth elements.
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– Enhanced Accuracy for Molecules: Useful in quantum chem-
istry for reaction barriers and binding energies.

• Limitations

– Computational Cost: More expensive due to non-local exchange
integral evaluation.

– Empirical Nature: The mixing parameter α is often determined
empirically.

– Limited Applicability to Metals: Hybrid functionals may fail
for metallic systems.

8.2 Self-interaction

Remembering the discussion on self-interaction error in the context of the
Hartree theory, it is worth noting that, although the exact Exc functional
should give a self- interaction free theory, the mentioned approximate im-
plementations do not. The approximate exchange term does not cancel the
self interaction present in the Hartree term. There are ways to correct for
self interaction within DFT (prominently in the same Perdew-Zunger pa-
per proposing the LDA parametrization), but it is neither sim- ple nor clear
the way to improve on this. Interestingly, since Hartree-Fock theory is self-
interaction free, the hybrid functionals, inasmuch as they incorporate a frac-
tion of exact exchange, they mitigate the problem. Indeed, some of the
problems for which hybrid functionals improve over GGAs are ones in which
self-interaction is an issue, namely, in systems with highly localized electrons,
or, more clearly, in localized singly occupied states. In the latter, GGAs tend
to delocalize the state as the electron would be repelled by its own density,
which is clearly an artifact.

8.2.1 Van der Waals interactions

Dispersion interactions are quite hard to simulate from first principles. This
is due to the following two facts:

• They result purely from electronic correlation. They result from the
coupled (cor- related) quantum dipole fluctuations, and manifest them-
selves mostly in weak interactions between neutral molecules of weak
polarity.

• The correlation is genuinely non-local, the potential at a given point
depending on the particle density far away.
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These interactions cannot be captured by local or semilocal correlation
functionals such as LDA or GGAs, or even further up the ladder, since higher
order derivatives do not help, and the non-locality in the hybrids is for ex-
change only, not for correlation. Dispersion interactions are extremely im-
portant in the configurations and dynamics of biomolecules and of many
molecular crystals. For decades, this lack of dispersion in DFT limited its
applicability considerably. The pressing need forced the appearance of em-
pirical corrections of different kinds, the most popular one, due to Grimme,
consisted in adding attractive interatomic forces with a r−6 decay, to the ab
initio forces, making them depend on parameters that were fitted empirically.

In 2004, in a collaboration between Langreth in Rutgers and Lundqvist in
Stockholm, a genuinely non-local correlation functional was proposed from
theoretical considerations, as the first ab initio DFT with dispersion forces.
There are now several variants of it, mostly tinkering with what is the best
GGA exchange that should be added.

E = EGGA-revPBE + ELDA + Enl
xc (37)

Enl
xc =

1

2

∫∫
d3r1d

3r2 n(r1)n(r2)Φ(q1, q2, r12) (38)

q(n,∇n) = 1 +
ϵLDA
c (n)

ϵLDA
x (n)

+ 0.8491

( ∇n
2nkF

)2

(39)

kF = (3π2n)1/3 (40)

The non-local character of the functional made it extremely more costly
computation- ally than a GGA. In 2010, however, Roman and Soler rewrote
the functional in terms of a suitable expansion of products which made it
much more efficient. Nowadays a VDW-DFT calculation on a typical system
can represent 20-30% higher cost than a GGA.

8.3 Extensions of KS-DFT and Non-Local Effective
Potentials

While standard KS-DFT assumes a local effective potential, many extensions
introduce non-local effective potentials that depend on the wavefunctions
rather than just the density. We have just seen two of them (Hybrids and
vdW), but there are others as:

• Optimized Effective Potential (OEP) Method - A technique to approx-
imate a local potential that mimics a non-local interaction. - The goal
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is to find a local potential Veff(r) that produces the same expectation
values as a non-local exchange term.

• Quasiparticle Self-Consistent GW (QSGW) and Koopmans-Compliant
Functionals - Incorporate energy-dependent and non-local potentials to
improve upon KS-DFT deficiencies, especially for band gaps.

Reconciliation: Why HK Theorems Still Hold Despite the introduc-
tion of non-locality in the effective potential, the HK theorems remain valid
because:

• The original HK theorem applies to the many-body system with a local
Vext(r), ensuring that the ground-state density uniquely determines the
total energy.

• KS-DFT is a reformulation, not a separate theory—the KS system is
just an auxiliary system designed to reproduce the density of the true
many-body system.

• In hybrid functionals and GKS, the introduction of non-locality occurs
in the exchange-correlation potential, which is not constrained by HK
theorems.

Thus, the fundamental variational principle of DFT remains intact,
but the practical implementation moves beyond strict locality.
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