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Practical Implementation of DFT

▶ The previous chapter introduced the theoretical framework of density-functional
theory (DFT).

▶ Kohn and Sham (1965) provided a practical approach for applying DFT.

▶ Their method reduces the complexity by rewriting the energy functional as:

E [n] = T0[n] +

∫
d3rn(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc [n], (1)

where:
▶ T0[n]: Kinetic energy of a non-interacting electron system with density n(r).
▶ Φ(r): Hartree potential.
▶ Exc [n]: Exchange-correlation energy (key unknown component).



Kohn-Sham Equations and Orbital-Free DFT

▶ The original many-body problem is transformed into a mean-field-like system:

V (r) = Vext(r) + Φ(r) +
δExc [n]

δn(r)
. (2)

▶ This allows solving for non-interacting electrons in an effective potential.

▶ A key area of research is finding better approximations for the universal
functional F .

▶ A major challenge:
▶ The kinetic energy functional T [n] is hard to model from the density alone.
▶ This difficulty stems from atomic shell structures and the role of antisymmetric

wavefunctions.

▶ Orbital-Free DFT aims to remove orbitals entirely, but remains an active area of
development.



Kohn-Sham Energy Functional

▶ Following Jones and Gunnarsson, we express the functional as:

E [n] = T0[n] +

∫
d3rn(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc [n]. (3)

▶ The variational principle applied to this functional gives:

δE [n]

δn(r)
=
δT0[n]

δn(r)
+ Vext(r) + Φ(r) +

δExc [n]

δn(r)
= µ. (4)

▶ µ is the Lagrange multiplier ensuring particle number conservation.



Effective Potential and Exchange-Correlation

▶ Comparing this result with a system under an effective potential V (r):

δE [n]

δn(r)
=
δT0[n]

δn(r)
+ V (r) = µ, (5)

▶ This shows the mathematical equivalence of both problems, if:

V (r) = Vext(r) + Φ(r) + Vxc [n](r), (6)

where we define the exchange-correlation potential as:

Vxc [n](r) =
δExc [n]

δn(r)
. (7)

▶ This formulation forms the foundation of the Kohn-Sham equations.



Kohn-Sham Equations

▶ The independent particle problem under the potential V (r) is solved using the
Schrödinger equation:(

−1

2
∇2 + V (r)

)
ψi (r) = ϵiψi (r). (8)

▶ The corresponding electron density is obtained as:

n(r) =
∑

i

fi |ψi (r)|2. (9)

▶ Here, fi represents the occupation of the state, which can follow the Fermi-Dirac
distribution.

▶ This framework enables the determination of electronic structure in a
self-consistent manner.



Kinetic Energy Functional and Levy’s Construction
▶ The kinetic energy for non-interacting electrons is computed as:

T0[n(r)] = −1

2

N∑

i

⟨ψni |∇2|ψni ⟩. (10)

▶ This raises a paradox: How can T0 be a functional of the density if it is
computed from the orbitals?

▶ Levy’s construction provides the resolution:
▶ For an independent-electron system, the universal functional in Levy’s approach is

precisely T0[n].
▶ This ensures that the kinetic energy derived from ψi is indeed a valid functional of

n(r).
▶ Given n(r), we can compute the total energy functionals:

▶ External potential, Hartree energy, and exchange-correlation energy.
▶ With an exact Exc , both n(r) and EGS would match the exact many-electron

solution.

▶ The orbitals ψni (r) and their eigenvalues are auxiliary quantities without direct
physical significance.



Exchange-Correlation Energy and Potential

▶ Both the exchange-correlation energy functional Exc [n] and its potential Vxc [n](r)
are unknown.

▶ In principle, there exists an exact functional for Exc , but its form is unknown.

▶ The Kohn-Sham formalism conveniently packages everything unknown into a
small term.

▶ From this point forward, all calculations will be based on approximate Exc [n]
functionals.



Nature of Vxc [n](r)

▶ The exchange-correlation potential Vxc [n](r) is:
▶ A local potential in real space.
▶ A functional of the electron density: the potential at a point depends on the full

density distribution.

▶ To approximate Vxc , we rely on two main approaches:
▶ Local Density Approximation (LDA)
▶ Generalized Gradient Approximation (GGA)



Local Density Approximation (LDA)

▶ The simplest approximation: Assume that Vxc depends only on the local density
at each point.

▶ The homogeneous electron liquid (jellium) serves as the reference system.

▶ The exchange-correlation energy is written as:

ELDA
xc [n] =

∫
d3rn(r)ϵHEGxc (n(r)). (11)

▶ Here, ϵHEG
xc (n) is the exchange-correlation energy per electron in jellium.



Exchange and Correlation in LDA

▶ The exchange energy (from Hartree-Fock for jellium) is:

ELDA
x [n] = −3

4

(
3

π

)1/3 ∫
d3rn(r)4/3. (12)

▶ This was originally introduced by Dirac and later used by Slater.

▶ The correlation energy was obtained via Quantum Monte Carlo (QMC)
calculations (Ceperley Alder, 1980):

εc(rs) =

{
Alogrs + B + Crs logrs + Drs , rs ≤ 1

a
1+b1

√
rs+b2rs

, rs > 1
(13)



Exchange and Correlation in LDA
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12.5 Generalised gradient approximation, GGA

One can think of improving on LDA in an expansion form around the point considered
in LDA. The next term would include the gradients, as

EGGA
xc [n] =

Z
d3rn(r)"xc(n(r),rn(r))

Why “generalised"? Although originally proposed in the paper by Kohn and Sham,
it was disappointingly inaccurate (in fact, LDA had been surprisingly successful!).
Perdew noticed that the sum rule for nxc integrating to �1 had to be enforced. The
LDA approximation was shown to fulfil it by construction, but not any gradient ex-
pansion. Once noticed, the gradient approximations fulfilling it were called GGAs.
After efforts in defining good GGAs, they have proved more accurate than LDA, and
the extra computational cost is normally negligible.

Problems with GGA, however:

• There is no natural reference for it, as there was for LDA. The homogeneous
liquid does not help. This led to multiple proposals following different philoso-
phies. Nowadays there are several hundred different GGAs around.

• They do not seem to represent a step in a systematic (expansion) way to improve
on it.

A quite paradigmatic comparison of LDA versus GGA results is shown here:

EA Michaelmas 2024
From: D. M. Ceperley and B. J. Alder (Phys. Rev. Lett. 1980)



Accuracy and Limitations of LDA

▶ With defined εx(n) and εc(n), LDA provides a full DFT approximation.

▶ Despite its simplicity, LDA predictions are often surprisingly accurate.

▶ However, LDA suffers from:
▶ Self-interaction error: Exchange does not fully cancel Hartree term.
▶ Overbinding in molecules and solids.
▶ Poor treatment of van der Waals interactions.



Ceperley-Alder QMC resultsChapter 12 Page 111

With the defined "x(n) and "c(n) we have a fully fledged LDA approximation to DFT.
We will see results later in the course, but we can advance that they are surprisingly
accurate. In the table below you see results for bond lengths in selected dimers. In
many ways and systems, they are better than Hartree-Fock’s, in spite of its also being
a mean-field-like solution of the correlated problem.

Bond length (Å) Experiment LDA Error

H2 0.74 0.77 0.03
B2 1.59 1.60 0.02
N2 1.10 1.10 0.00
F2 1.42 1.38 0.04

Na2 3.08 3.00 0.08
Al2 2.47 2.46 0.01
P2 1.89 1.89 0.01
S2 1.89 1.89 0.00
Cl2 1.99 1.98 0.01

Average 0.02

R G Parr & W Yang, Density-Functional Theory of Atoms and Molecules
Oxford University Press (1994)

The roundabout way to define the theory implies that the exchange term is approxi-
mate, only exact for jellium (while Hartree-Fock calculates it exactly for whatever sys-
tem), while an approximation to electronic correlation is included, which is completely
absent in Hartree-Fock. Importantly, however, the local character of the potential in
LDA makes it extremely easier to calculate on a computer as compared to non-local
Hartree-Fock, which tends to be a factor between 20 and 100 times more costly to cal-
culate.

EA Michaelmas 2024



LDA results

Results for bond lengths in selected dimers. In many ways and systems, they are better
than Hartree-Fock’s, in spite of its also being a mean-field-like solution of the
correlated problem.
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Generalized Gradient Approximation (GGA)

▶ GGA improves upon LDA by incorporating density gradients.

▶ The functional form is:

EGGA
xc [n] =

∫
d3rn(r)ϵxc(n,∇n). (14)

▶ GGA corrects some of LDA’s systematic errors:
▶ Improves bond lengths and reaction barriers.
▶ Better treatment of electron localization.



Issues with GGA

▶ GGA is an empirical improvement over LDA but not a systematic expansion.
▶ Problems include:

▶ No unique reference system, unlike LDA.
▶ Many different GGA functionals exist, leading to inconsistency.



GGA Vs LDA: A Clear improvement

LDA vs. GGA for Fe
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12.5 Generalised gradient approximation, GGA

One can think of improving on LDA in an expansion form around the point considered
in LDA. The next term would include the gradients, as

EGGA
xc [n] =

Z
d3rn(r)"xc(n(r),rn(r))
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Spin Polarization in DFT

▶ In ferromagnetic materials like iron, a spontaneous magnetic moment per unit
cell exists.

▶ This magnetization results from an imbalance in electron spins.

▶ Up to now, we have assumed electrons pair up in single-particle orbitals.

▶ However, certain materials, like ferromagnetic iron, require spin-polarized
solutions.



Spin-Polarized Density Functional Theory

▶ DFT can be extended to include spin-polarized solutions.

▶ Instead of a single electron density n(r), we introduce separate spin densities:

E [n↑, n↓] (15)

▶ The total electron density remains:

n(r) = n↑(r) + n↓(r). (16)

▶ Each spin density is computed separately using the corresponding wave functions:

nσ(r) =
∑

i

|ψσ
i (r)|2. (17)



Spin Density and Magnetic Moments

▶ The spin density is defined as:

ns(r) = n↑(r)− n↓(r). (18)

▶ This quantity determines the degree of spin polarization in a system.
▶ Spin-polarized DFT allows:

▶ Accurate modeling of magnetic materials.
▶ Computation of local magnetic moments.
▶ Study of spin-dependent electronic properties.



Total Energy in DFT

▶ Once the Kohn-Sham (KS) equations are solved, the total ground-state energy is
given by:

E = −1

2

∑

occ i

⟨ψi |∇2|ψi ⟩+
∫

d3rn(r)

[
Vext(r) +

1

2
vH(r) + ϵxc(n(r),∇n(r))

]
. (19)

▶ This equation contains:
▶ Kinetic energy of occupied KS orbitals.
▶ External potential contribution.
▶ Hartree energy (vH(r)).
▶ Exchange-correlation energy (ϵxc).



Double Counting Correction in DFT

▶ An alternative form of the total energy expression:

E =
∑

occ i

ϵi +

∫
d3rn(r)

[
ϵxc(n(r),∇n(r))− Vxc(n(r),∇n(r))− 1

2
vH(r)

]
. (20)

▶ The second equation explicitly corrects for double counting errors.
▶ Why is this correction needed?

▶ The total energy includes an integral over the energy density.
▶ The KS Hamiltonian already contains Vxc , which must be subtracted.
▶ The Hartree term is included twice and must be corrected.



Band Energy in Solid-State Physics

▶ The sum of KS eigenvalues is known as the band energy:

∑

i

ϵi (21)

▶ In solid-state physics, this term represents the integration over occupied bands.

▶ However, it is not the true total energy due to missing exchange-correlation and
Hartree corrections.

▶ This distinction is crucial for:
▶ Computing accurate total energies.
▶ Understanding energy differences in materials.
▶ Avoiding misinterpretations of KS eigenvalues as physical energies.



The Bandgap Problem in DFT

▶ Kohn-Sham (KS) density functional theory is exact for ground-state density and
total energy.

▶ However, approximations for other observables, such as band structures, remain
uncertain.

▶ KS eigenvalues are commonly used for:
▶ Band structures.
▶ Response functions.

▶ These interpretations introduce errors, particularly in bandgap predictions.



Interpretation of Kohn-Sham Eigenvalues

▶ KS eigenvalues are sometimes interpreted as total energy differences.

▶ This interpretation is valid only for the highest occupied state, which gives the
ionization energy:

I = −ϵN . (22)

▶ Important observations:
▶ KS band structures do not correspond to electron addition/removal energies.
▶ Approximate functionals introduce self-interaction errors.
▶ Functionals like DFT+U, SIC, and hybrid functionals improve bandgap predictions.



Janak’s Theorem and Ionization Energy

▶ Janak’s theorem relates KS eigenvalues to energy derivatives:

∂E

∂fi
= ϵi . (23)

▶ The ionization energy is given by:

I = EN−1 − EN = −ϵN . (24)

▶ Similarly, the electron affinity is:

A = EN+1 − EN = ϵN+1. (25)

▶ However, this does not generalize to all eigenvalues.



The Bandgap Problem and Derivative Discontinuity

▶ The fundamental bandgap is defined in terms of total energy differences:

Eg = EN+1 − EN − (EN − EN−1). (26)

▶ The KS bandgap is commonly computed as:

EKS
g = ϵN+1(N)− ϵN(N). (27)

▶ The true bandgap includes an additional derivative discontinuity ∆:

Eg = EKS
g +∆. (28)



Origin and Consequences of the Derivative Discontinuity

▶ The discontinuity arises because the total energy function E (N) is not smooth:

∂E

∂N

∣∣∣∣
N−

̸= ∂E

∂N

∣∣∣∣
N+

. (29)

▶ In solids, this manifests as a rigid shift in the KS potential.
▶ Consequences:

▶ The exact functional should have a nonzero ∆.
▶ Standard functionals (LDA, GGA) lack this, leading to underestimated bandgaps.
▶ Hybrid functionals and EXX capture part of the effect, improving predictions.



Implications and Beyond KS-DFT

▶ Failure of Conventional Functionals:
▶ LDA and GGA fail to capture the derivative discontinuity.
▶ Bandgaps predicted by these functionals are systematically too small.

▶ Orbital-Dependent Functionals:
▶ Hybrid functionals and EXX recover part of the discontinuity.

▶ Beyond KS-DFT:
▶ Many-body approaches like GW corrections explicitly account for ∆, leading to

better bandgap predictions.



Beyond GGA: Jacob’s Ladder
▶ Unlike some quantum-chemistry approaches, DFT does not have a systematic

path toward exact solutions.

▶ However, functionals are classified in an accuracy hierarchy known as Jacob’s
Ladder, inspired by the biblical concept of a staircase to Heaven.
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The second equation shows the double counting correction also needed in DFT when
computing the ground state energy from the sum of the single-particle energies of the
“occupied" states. The double counting for the Hartree term is a seen in the previous
chapters. The one for the exchange correlation term corrects for the fact that the en-
ergy contains the integral of the energy-density, while the Kohn-Sham single particle
Hamiltonian contains the exchange correlation potential.

The term
NX

i

✏ni

is sometimes called the band energy (in solid state contexts) since that sum would rep-
resent the integration of the energy for the occupied bands.

12.8 Beyond GGA. Jacob’s ladder

Unlike some quantum-chemistry approaches, the route towards exact solutions is not
systematic. Approximate density functional theories are surprisingly accurate, and
offer the best balance of accuracy(predictive power) versus efficiency. But if you need
more accuracy, the path is not clear.

The aspiration of systematic improvement of accuracy is called Jacob’s Ladder in the
community, taken the biblical concept of a staircase to Heaven, as in this painting by
William Blake (British Museum)

However, the systematics is less systematic than one would wish. Here some of the
acronyms mentioned in the ladder figure. Many of them relate to initials of the authors
of the given papers.

• LDA: The Perdew Zunger (PZ) parametrisation is probably the most popular
LDA. There are others, but the differences are very minor since they all (or most)
refer to the QMC results of Ceperley and Alder.

EA Michaelmas 2024



The Hierarchy of Functionals: Jacob’s Ladder

▶ Functionals are classified based on their complexity and accuracy:

1. LDA: Uses only the local density.
2. GGA: Includes density gradients.
3. Meta-GGA: Incorporates second derivatives or kinetic energy density.
4. Hybrids: Mix DFT exchange with exact Hartree-Fock exchange.
5. RPA and Beyond: Uses response functions.



Local Density Approximation (LDA)

▶ The simplest approximation: assumes that the exchange-correlation energy
depends only on the local density.

▶ The Perdew-Zunger (PZ) parametrization is the most widely used LDA functional.

▶ LDA is derived from Quantum Monte Carlo (QMC) results for the homogeneous
electron liquid.



Generalized Gradient Approximation (GGA)

▶ GGA incorporates density gradients to improve upon LDA.
▶ Two major families of GGA functionals:

▶ Chemistry-based (e.g., BLYP): Fit to molecular data.
▶ Physics-based (e.g., PBE, revPBE, PBEsol): Built on universal constraints.

▶ Provides better structural and energetic predictions than LDA.



Meta-GGA Functionals

▶ Meta-GGA introduces the kinetic-energy density as an additional variable.

▶ SCAN (Strongly Constrained and Appropriately Normed) is a widely used
Meta-GGA functional.

▶ Offers better accuracy for strongly correlated systems.



Hybrid Functionals

▶ Hybrid functionals combine:
▶ Exact Hartree-Fock (HF) exchange.
▶ Conventional DFT exchange-correlation functionals.

▶ The exchange-correlation energy in hybrid functionals is given by:

Ehybrid
xc = αEHF

x + (1− α)EDFT
x + EDFT

c . (30)

▶ The mixing parameter α typically ranges from 0.2 to 0.3.



Exchange Potential in Hybrid Functionals

▶ The HF exchange potential explicitly depends on KS orbitals:

VHF
x (r , r ′) = −

occ∑

i

ψ∗
i (r

′)ψi (r)
1

|r − r ′| . (31)

▶ This non-local expression contrasts with standard DFT exchange, which is a
simple function of density.

▶ The presence of ψi (r) means that hybrid functionals are not purely density
functionals.



Kohn-Sham Equations with Hybrid Functionals

▶ The Kohn-Sham equation in hybrid DFT becomes:

(
−1

2
∇2 + Vext(r) + VH(r) + V hybrid

xc (r)

)
ψi (r) = ϵiψi (r). (32)

▶ The exchange-correlation potential is:

V hybrid
xc (r) = αVHF

x (r) + (1− α)VDFT
x (r) + VDFT

c (r). (33)

▶ The additional HF exchange term increases computational cost but improves
accuracy.



Generalized Kohn-Sham (GKS) Theory and OEP

▶ Hybrid functionals require an extended framework beyond standard KS-DFT.

▶ The Generalized Kohn-Sham (GKS) Theory allows functionals of the density
matrix:

γ(r , r ′) =
occ∑

i

ψ∗
i (r

′)ψi (r). (34)

▶ The Optimized Effective Potential (OEP) method:
▶ Finds a local potential that mimics the non-local HF exchange term.
▶ Used to make hybrid functionals computationally more efficient.



Advantages and Limitations of Hybrid Functionals

▶ Advantages:
▶ Improved Band Gaps: Reduces the bandgap underestimation problem.
▶ Better Treatment of Localized Electrons: Useful for transition metals and

rare-earth elements.
▶ More Accurate Molecular Energies: Better predictions for reaction barriers and

binding energies.

▶ Limitations:
▶ Computationally Expensive: Non-local exchange evaluation increases cost.
▶ Empirical Mixing Parameter α: No universal rule for choosing α.
▶ Not Always Suitable for Metals: Hybrid functionals may fail in metallic systems.



Van der Waals Interactions in DFT

▶ Standard functionals (LDA, GGA) fail to capture dispersion interactions.

▶ The first ab initio Van der Waals (vdW) functional was developed in 2004.

▶ Non-local correlation energy is modeled as:

Enl
xc =

1

2

∫∫
d3r1d

3r2 n(r1)n(r2)Φ(q1, q2, r12). (35)

▶ Computational cost is 20-30% higher than GGA.



Extensions Beyond KS-DFT

▶ Non-local effective potentials introduce wavefunction dependence:
▶ Optimized Effective Potential (OEP): Constructs a local potential for non-local

interactions.
▶ Quasiparticle Self-Consistent GW (QSGW): Corrects bandgaps and excitations.

▶ Despite these extensions, the Hohenberg-Kohn theorems remain valid.



Questions?

Any Questions?


