Correlation Functions I



One-Particle Green's Function: Overview

The one-particle Green's function is defined as

G(x1, t1; X2, 12) = —i (T{1(x1, t1)07 (32, 12) }).

It encodes the propagation of single particles and serves as the foundation for
many-body techniques.



Greater and Lesser Propagators

Greater Propagator:

G”(x1, t1 X0, b)) = —i (Y(x1, t1)YT (x2, 22) ).

Represents the amplitude for particle addition (creation at xp, t, and annihilation at
X1, t1).

Lesser Propagator:

G<(X1, t1; X2, 1.'2) = I'<¢T(X2, tg)w(xl, tl) >

Describes the amplitude for particle removal (or hole propagation).

In equilibrium, these are related by:

G (w) = —e A1) 6> (w).



Constructing Causal and Time-Ordered Green's Functions

From the greater and lesser functions, we build:
> Retarded:

Gr(x1, t1; x2, t2) = 0(t1 — 1) |:G>(X1, t1; X0, ) — G<(x1, t1; x2, tz)]
> Advanced:
Ga(xi, t1; x0, 1) = —0(t2 — t1) [G>(x1, t1; X2, t2) — G<(x1, t1; x2, tg)]
» Time-Ordered:
Gr(x1, t1x2, 1) = O(t1 — £2) G~ (xq, t1; X2, 2)

+0(t2 — t1)G<(x1, t1; X2, t2).



Green's Function in Frequency Space

Starting with the spectral (Lehmann) representation:

G(z):i/OOdW/A(WI),

/
e Z— W

where A(w') is the spectral function.

Analytic continuation yields:

Gr(w) = lim G(w+in), Ga(w)= lim G(w —in).

n—0+t n—0+

Moreover,

1
A(x1, X2, w) = - Im Ggr(x1,x2,w).



Diagonal Green's Functions for Independent Particles

For a non-interacting system with eigenfunctions 1, (x) and eigenvalues ¢:
P(x) =Y vil(x)ck,
k

the retarded Green's function in the eigenbasis is:

1

Gorlh ) = T

and hence the spectral function is:

1
Akk(w) = —; Im GO’R(k,w) = 5(&) — Ek).



Spectral Function for Interacting Systems

For an interacting many-body system, using the Lehmann representation:
G” (x1, tr;xe, 12) = —i (Y1, 0)¥" (e, 2)),
one inserts a complete set of eigenstates. Define the Dyson amplitudes:
fax (x) = (alt(x)[A).

After Fourier transformation, one finds:

G” (x1,50,w) = =211 ¥ Wa far(x1)fair () (w + Ea — En),

A

G=(x1,%,w) = 4211 Y wx far(x1)fix (x2) 6(w + Ea — Ex).

A

Then the spectral function is given by:
A(x1, x2,w) = 721 [G>(x1,X2,w) — G<(X1,XQ,w)],
™

or explicitly,
A(x, xo, w me x1)far(%) 6(w + Ea — Ex) [Wa + wa].



Spectral Function and Analytic Continuation at T =0
At zero temperature and fixed particle number:

oo / /
Gla) =i [ S,

z—w

—00

The retarded Green's function is
Gr(w) = lim G(w+ in),
n—0t

so that 1
A(xt, x,w) = - Im Ggr(x1, x2,w).
For the time-ordered Green's function:

Gr(w) = Gr(w) w>p,
T 6aw) w<p

which implies
+ |m[l GT(Xl,Xg,w)] w > My

A(x1, X2, w) = % {

—Im[i Gr(x1, x,w)] w < p.



Why Use the Time-Ordered Green's Function?

The time-ordered (Feynman) Green's function G is crucial because:

1.

It appears naturally in perturbation theory and allows the use of Wick's theorem.

2. It is the standard object in the Matsubara formalism for finite temperature.
3.
4. Many-body techniques such as the Dyson equation are formulated in terms of Gr.

It is computationally convenient; analytic continuation then gives Gg or Ga.



Electron Density from Gt

The electron density at x is:

n(x) = (¥ (x, )9(x, 1)) = =i Gr(x, t;x, t7),
with tT an infinitesimally later time.

At T =0, using the Lehmann representation,

n(x) = /OO dw A(x, x,w)f(w),
with f(w) = 6(p — w), so that

n(x) =Y 1K) 6k — ).

A



One-Particle Density Matrix and Momentum Distribution

The one-particle density matrix is defined by
p(x, X)) = (WT(x', t)h(x, t)) = —i Gr(x, t; X', t1).

At T =0,
p(x,x') =Y 01— ex) A()E(X).
A

Projecting onto plane-wave states yields the momentum distribution:

p(k) = (i — ex)[kIR)%.
A



Kinetic Energy from G

The kinetic energy operator is
A 1
T=-2V2
2

Its expectation value can be written as:

(T) = —1/d3x lim V2 p(x, x').

2 x'—x

Substituting the Lehmann representation,

(T) = —;ZH(M—Q)/d?’X (%) V2 ().
A



Relating Gt to the Coulomb Energy

The Coulomb (electron—electron) interaction energy is given by:

1
(Vee) = 5 / d®x d®x' v(x — x') n(x, '),
with the pair correlation function

n(x,x') = (T )P () (x ) (x)).

Even though Ve is a two-body operator, the equation of motion for the field operator
relates its effects to the one-particle Green's function. For example, via the
Galitskii—Migdal formula one obtains:

_1 3 ; 8_ A
E—2/dx lim [a h(x)]G(x,t,x,t ),

x'—x

where h(x) = —3V2 + veye(x).



Summary and Conclusions

» We defined expectation values, static and dynamic correlation functions.

> Static one-electron properties (density, density matrix, momentum distribution) and two-particle
correlations (pair correlation function, structure factor) were discussed.

» Dynamic correlations lead to spectral functions and are linked via Kramers—Kronig relations.

» Response functions and the fluctuation—dissipation theorem connect microscopic fluctuations to
macroscopic observables.

» The one-particle Green's function, built from greater and lesser propagators, provides the
foundation for describing particle propagation, and its spectral representation encodes excitation
spectra.

» Derived quantities such as electron density, kinetic energy, and even Coulomb energy can be
expressed in terms of the one-particle Green's function.



	One-Particle Green's Function
	Useful Quantities from the One-Particle Green's Function
	Conclusion

