
Correlation Functions II



One-Particle Green’s Function: Overview

The one-particle Green’s function is defined as

G (x1, t1; x2, t2) = −i ⟨T{ψ(x1, t1)ψ†(x2, t2)}⟩.

It encodes the propagation of single particles and serves as the foundation for
many-body techniques.



Greater and Lesser Propagators

Greater Propagator:

G>(x1, t1; x2, t2) = −i ⟨ψ(x1, t1)ψ†(x2, t2) ⟩.

Represents the amplitude for particle addition (creation at x2, t2 and annihilation at
x1, t1).

Lesser Propagator:

G<(x1, t1; x2, t2) = i ⟨ψ†(x2, t2)ψ(x1, t1) ⟩.

Describes the amplitude for particle removal (or hole propagation).

In equilibrium, these are related by:

G<(ω) = −e−β(ω−µ) G>(ω).



Constructing Causal and Time-Ordered Green’s Functions

From the greater and lesser functions, we build:

▶ Retarded:

GR(x1, t1; x2, t2) = θ(t1 − t2)
[
G>(x1, t1; x2, t2)− G<(x1, t1; x2, t2)

]
.

▶ Advanced:

GA(x1, t1; x2, t2) = −θ(t2 − t1)
[
G>(x1, t1; x2, t2)− G<(x1, t1; x2, t2)

]
.

▶ Time-Ordered:

GT (x1, t1; x2, t2) = θ(t1 − t2)G
>(x1, t1; x2, t2)

+θ(t2 − t1)G
<(x1, t1; x2, t2).



Green’s Function in Frequency Space

Starting with the spectral (Lehmann) representation:

G (z) = i

∫ ∞

−∞

dω′ A(ω′)

z − ω′ ,

where A(ω′) is the spectral function.

Analytic continuation yields:

GR(ω) = lim
η→0+

G (ω + iη), GA(ω) = lim
η→0+

G (ω − iη).

Moreover,

A(x1, x2, ω) = − 1

π
Im GR(x1, x2, ω).



Diagonal Green’s Functions for Independent Particles

For a non-interacting system with eigenfunctions ψk(x) and eigenvalues ϵk :

ψ(x) =
∑
k

ψk(x)ck ,

the retarded Green’s function in the eigenbasis is:

G0,R(k , ω) =
1

ω − ϵk + iη
,

and hence the spectral function is:

Akk(ω) = − 1

π
Im G0,R(k , ω) = δ(ω − ϵk).



Spectral Function for Interacting Systems
For an interacting many-body system, using the Lehmann representation:

G>(x1, t1; x2, t2) = −i ⟨ψ(x1, t1)ψ†(x2, t2)⟩,

one inserts a complete set of eigenstates. Define the Dyson amplitudes:

fαλ(x) = ⟨α|ψ(x)|λ⟩.

After Fourier transformation, one finds:

G>(x1, x2, ω) = −2πi
∑
α,λ

wα fαλ(x1)f
∗
αλ(x2) δ(ω + Eα − Eλ),

G<(x1, x2, ω) = +2πi
∑
α,λ

wλ fαλ(x1)f
∗
αλ(x2) δ(ω + Eα − Eλ).

Then the spectral function is given by:

A(x1, x2, ω) =
i

2π

[
G>(x1, x2, ω)− G<(x1, x2, ω)

]
,

or explicitly,

A(x1, x2, ω) =
∑
α,λ

fαλ(x1)f
∗
αλ(x2) δ(ω + Eα − Eλ) [wα + wλ].



Spectral Function and Analytic Continuation at T = 0
At zero temperature and fixed particle number:

G(z) = i

∫ ∞

−∞

dω′ A(x1, x2, ω
′)

z − ω′ .

The retarded Green’s function is
GR(ω) = lim

η→0+
G(ω + iη),

so that

A(x1, x2, ω) = − 1

π
Im GR(x1, x2, ω).

For the time-ordered Green’s function:

GT (ω) =

{
GR(ω) ω > µ,

GA(ω) ω < µ,

which implies

A(x1, x2, ω) =
1

π

{
+ Im[i GT (x1, x2, ω)] ω > µ,

− Im[i GT (x1, x2, ω)] ω < µ.



Why Use the Time-Ordered Green’s Function?

The time-ordered (Feynman) Green’s function GT is crucial because:

1. It appears naturally in perturbation theory and allows the use of Wick’s theorem.

2. It is the standard object in the Matsubara formalism for finite temperature.

3. It is computationally convenient; analytic continuation then gives GR or GA.

4. Many-body techniques such as the Dyson equation are formulated in terms of GT .



Electron Density from GT

The electron density at x is:

n(x) = ⟨ψ†(x , t)ψ(x , t)⟩ = −i GT (x , t; x , t
+),

with t+ an infinitesimally later time.

At T = 0, using the Lehmann representation,

n(x) =

∫ ∞

−∞
dω A(x , x , ω)f (ω),

with f (ω) = θ(µ− ω), so that

n(x) =
∑
λ

|fλ(x)|2 θ(µ− ϵλ).



One-Particle Density Matrix and Momentum Distribution

The one-particle density matrix is defined by

ρ(x , x ′) = ⟨ψ†(x ′, t)ψ(x , t)⟩ = −i GT (x , t; x
′, t+).

At T = 0,
ρ(x , x ′) =

∑
λ

θ(µ− ϵλ) fλ(x)f
∗
λ (x

′).

Projecting onto plane-wave states yields the momentum distribution:

ρ(k) =
∑
λ

θ(µ− ϵλ)|⟨k |fλ⟩|2.



Kinetic Energy from GT

The kinetic energy operator is

T̂ = −1

2
∇2.

Its expectation value can be written as:

⟨T ⟩ = −1

2

∫
d3x lim

x ′→x
∇2

x ρ(x , x
′).

Substituting the Lehmann representation,

⟨T ⟩ = −1

2

∑
λ

θ(µ− ϵλ)

∫
d3x f ∗λ (x)∇2fλ(x).



Relating GT to the Coulomb Energy

The Coulomb (electron–electron) interaction energy is given by:

⟨Vee⟩ =
1

2

∫
d3x d3x ′ v(x − x ′) n(x , x ′),

with the pair correlation function

n(x , x ′) = ⟨ψ†(x)ψ†(x ′)ψ(x ′)ψ(x)⟩.

Even though Vee is a two-body operator, the equation of motion for the field operator
relates its effects to the one-particle Green’s function. For example, via the
Galitskii–Migdal formula one obtains:

E =
1

2

∫
d3x lim

x ′→x

[ ∂
∂t

− h(x)
]
G (x , t; x ′, t+),

where h(x) = −1
2∇

2 + vext(x).



Summary and Conclusions

▶ We defined expectation values, static and dynamic correlation functions.

▶ Static one-electron properties (density, density matrix, momentum distribution) and two-particle
correlations (pair correlation function, structure factor) were discussed.

▶ Dynamic correlations lead to spectral functions and are linked via Kramers–Kronig relations.

▶ Response functions and the fluctuation–dissipation theorem connect microscopic fluctuations to
macroscopic observables.

▶ The one-particle Green’s function, built from greater and lesser propagators, provides the
foundation for describing particle propagation, and its spectral representation encodes excitation
spectra.

▶ Derived quantities such as electron density, kinetic energy, and even Coulomb energy can be
expressed in terms of the one-particle Green’s function.
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