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Density in Real space

Figure 5.1. A contour plot of the spatial density in a realization of a 2D Wigner crystal as computed
with path-integral Monte Carlo at a surface density of 3.2 %102 em=2 (r; = 60) and temperature
16 K (10~% Ry). For the definition of the model, see Sec. 3.1. The disorder results from the initial
conditions of the Monte Carlo random walk. The spatial boundary conditions frustrate the
formation of a perfect crystal.



Momentum Distribution HEG
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Figure 5.2. The momentum distribution of the unpolarized 3D homogeneous electron gas (Sec. 3.1)
calculated in QMC for various densities ry. The inset shows the extrapolation at ry = 5 from a
system of N = 54 electrons to the thermodynamic limit [231]. The jump at the Fermi surface Z, the
quasi-particle strength, is the renormalization factor, see See. 7.5.
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Figure 11.7. The momentum distribution function p(k) of sodium (in the figure denoted n(p)).
Shown are results of experiment, QMC with Slater—Jastrow wavefunctions, GyW(, and LDA
calculations. The step function is the free-electron gas result. (From [230].)



Pair Correlation Function HEG
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Figure 5.3. The pair correlation function (left panel) of the 3D homogeneous electron gas at ry = 2.
The upper curve is the total, the lower curve for parallel spins. The derivative at r = 0 is related to
the cusp condition on the many-body wavefunction, see Sec. 6.1. The right panel shows the total
spin-independent structure factor. The solid curve is for non-interacting electrons. Note that its
value at k = 0is N/2, as in Eq. (5.18).



Pair Correlation Function Wigner Crystal
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Figure 5.4. The pair correlation function (left panel) of a Wigner crystal in 2D at r; = 60. The right

panel shows the corresponding structure factor; the peak shows ordering at the first reciprocal lattice
VeClor.



Analytic Structure of time correlation Functions
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Figure 5.5. Analytic structure of correlation functions as a function of complex frequency z. As
explained after Eq. (5.31), u is the chemical potential for adding or removing one or more particles,
and zero for an excitation with no change in particle number. Left: Poles for a retarded correlation
function, such as a causal response function discussed in Sec. 5.5. The poles at frequencies z,
corresponding for example to excitation energies of the N-electron system, are displaced into the
lower half-plane by the infinitesimal Im z = —5. This form follows from the requirement of
causality and it leads to the Kramers—Kronig relations, Eq. (5.53). Right: The structure of the
time-ordered correlation function C (z) at zero temperature in the complex plane, with two branch
cuts (see Sec. C.5) on the real axis. For frequencies Re (z) < p, the poles are displaced into the
upper plane by +in. Hence, for example, when C is a one-particle Green’s function, Imz =5 > 0
denotes energies for which particles can be removed. For addition of particles at real frequency
Rez = p, the imaginary part Imz = —n.



Si Loss and Absorption Spectra

n
T T T T T T

(1) 0-0:Ime, (b) Q0= Loss function
50 | B
3

07

7] o015

w(eV) w(EV)

Figure 5.6. Electronic spectra of bulk silicon. Figure by Francesco Sottile, with data of the
upper-right and the two lower panels taken from [242-244]. Left panels: Im es(w) (corresponding
to absorption when Q — 0, where the experiment is from [245]). Upper right: Loss function in
1/eV. Lower right: Dynamic structure factor in 1/eV. Top panels are for vanishing momentum
transfer, bottom panels for [Q] =1.32 a.u. The result for €4#(Q) at large Q has been obtained from
the measured Im é using the KK relation Eq. (5.53), which explains the error bar. Im ep7 and
—Im # are similar for large momentum transfer, but very different for small momentum transfer,
where the long-range part of the Coulomb interaction plays an important role.



