
Section 9.1: The Coulomb Interaction and Per-
turbation Theory

What do we want to achieve?

The aim is to calculate material properties via Green’s functions by treating the
Coulomb interaction as a perturbation. Since the non-interacting problem can
be solved exactly, the strategy is to expand around that solution.

Key Ideas and Equations

• Analogy with Scattering Theory: In scattering theory, an unperturbed
state |ϕ0⟩ is modified by a perturbation V̂ . The Lippmann–Schwinger equa-
tion reads

|ϕ⟩ = |ϕ0⟩+ (ω − Ĥ0)
−1 V̂ |ϕ⟩, (9.1)

which can be reformulated using the non-interacting Green’s function

G0 ≡ (ω + iη − Ĥ0)
−1, η → 0+,

so that
|ϕ⟩ = (1−G0 V̂ )−1|ϕ0⟩. (9.2)

• Full Green’s Function and Dyson Equation: Define the full Green’s
function by

G ≡ (1−G0 V̂ )−1G0,

which satisfies the Dyson equation:

G = G0 +G0 V̂ G.

Its perturbative expansion (the Born series) is

G = G0 +G0 V̂ G0 +G0 V̂ G0 V̂ G0 + · · · .

• Application to Many-Body Systems: For a full many-body Hamiltonian
Ĥ = Ĥ0 + V̂ , the full retarded Green’s function is

Gtot(ω) = (ω + iη − Ĥ)−1.

In strict analogy with the scattering case, one writes

Gtot(ω) = G
(0)
tot(ω) +G

(0)
tot(ω) V̂ Gtot(ω), (9.3)

with the expansion

Gtot(ω) = G
(0)
tot(ω) +G

(0)
tot(ω) V̂ G

(0)
tot(ω) +G

(0)
tot(ω) V̂ G

(0)
tot(ω) V̂ G

(0)
tot(ω) + · · · .

(9.4)
However, Gtot involves the interacting ground state, complicating direct eval-
uations.
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• Perturbation Theory for Energies and Wavefunctions: Two common
approaches are presented:

(i) Brillouin–Wigner Perturbation Theory: The energy and wave-
function are expanded as

E = Eip +

∞∑
n=1

⟨ϕip| V̂
(

1

1− P̂

1

E − Ĥ0

V̂

)n−1

|ϕip⟩, (9.5)

and

|Φ⟩ =
∞∑

n=0

(
1

1− P̂

1

E − Ĥ0

V̂

)n

|ϕip⟩, (9.6)

where P̂ projects onto the unperturbed state.

(ii) Rayleigh–Schrödinger Perturbation Theory: In this approach
the expansions become

E = Eip +

∞∑
n=1

⟨ϕip| V̂

(
1

Eip − Ĥ0

(Eip − E + V̂ )

)n−1

|ϕip⟩, (9.7)

and

|Φ⟩ =
∞∑

n=0

(
1

Eip − Ĥ0

(Eip − E + V̂ )

)n

|ϕip⟩. (9.8)

In both schemes the energy E appears self-consistently, and higher-order
corrections become increasingly cumbersome.

• Expansion Around a Mean-Field Hamiltonian (Møller–Plesset Per-
turbation Theory): Instead of treating the full Coulomb interaction as the
perturbation, one may include part of the interaction in a mean-field (e.g.,
Hartree–Fock) Hamiltonian:

Ĥ0 → Ĥ0 +Hartree–Fock mean field,

and treat the remaining interaction V̂ ′ perturbatively. In this approach:

– The zeroth-order energy is the sum of occupied Hartree–Fock eigenval-
ues.

– The first-order correction is given by

E(1) = ⟨ϕip| V̂ |ϕip⟩ = −
∑
i<j

(vijji − vijij) , (9.9)

so that Eip + E(1) equals the Hartree–Fock total energy.

– The second-order correction (MP2) is

E(2) =

occ∑
i<j

empty∑
a<b

|vijab − vijba|2

εi + εj − εa − εb
. (9.11)
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Although MP2 captures important correlation effects (e.g., van der Waals
forces), higher orders (MP3, MP4, etc.) are computationally expensive and
become less practical.

Section 9.2: Connecting the Interacting and Non-
Interacting Systems

Objective

This section addresses the difficulty that the interacting ground state appears
explicitly in the Green’s function expressions. The strategy is to connect the
non-interacting and interacting systems via adiabatic switching.

Key Ideas and Equations

• Adiabatic Switching-On of the Interaction: The Coulomb interac-
tion is slowly switched on using a time-dependent form:

vη(t) = vc e
−η|t|, η → 0+. (1)

At t → ±∞ the interaction is off, while at t = 0 the full interaction is
present.

• Interaction Picture and Time Evolution: In the interaction picture,
states evolve with the interaction via

|ψI(t)⟩ = UI(t, t0) |ψI(t0)⟩,

where the time-evolution operator is given by the Dyson series:

UI(t, t0) = T

{
exp

[
−i
∫ t

t0

VI(t
′) dt′

]}
. (2)

Here, the interaction-picture operator is

VI(t) = eiH0(t−t0) V e−iH0(t−t0).

• Connecting Ground States: By propagating the non-interacting ground
state |ϕip⟩ from t = −∞ (or +∞) using UI , one defines states |ϕ−η (t)⟩ and
|ϕ+η (t)⟩ that evolve into the interacting ground state. Expectation values
are then obtained as

⟨O⟩ =
⟨ϕ+η |O|ϕ−η ⟩
⟨ϕ+η |ϕ−η ⟩

, (3)

ensuring that divergent phases from the adiabatic switching cancel.
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• Gell-Mann–Low Theorem: This theorem guarantees that if the in-
teraction is switched on adiabatically, the non-interacting ground state
evolves into an eigenstate of the full Hamiltonian (ideally, the true inter-
acting ground state). This allows one to express the interacting Green’s
function without an explicit reference to the complicated interacting wave-
function.

• Interacting Green’s Function: The zero-temperature Green’s function
can then be written as

G(x, t;x′, t′) = −i
⟨ϕip|T{ψI(x, t)ψ

†
I(x

′, t′)Sη} |ϕip⟩
⟨ϕip|Sη |ϕip⟩

, (4)

where
Sη ≡ UI(∞,−∞)

is the full time-evolution (or scattering) operator in the interaction picture
and T denotes time ordering.

Section 9.3: Telling the Story of Particles – Dia-
grams

The starting point is the formal expression for the interacting Green’s function
at zero temperature (see Eq. (9.22)):

G(x, t;x′, t′) = −i
⟨ϕip|T

[
ψ(x, t)ψ†(x′, t′) Ŝ

]
|ϕip⟩

⟨ϕip|Ŝ|ϕip⟩
,

where the scattering (or time-evolution) operator is defined as

Ŝη ≡ UI(∞,−∞).

Using the interaction picture, the Coulomb interaction (treated as a perturba-
tion) is given by (Eq. (9.23)):

V̂I(t) =
1

2

∫
dx dx′ ψ†

I(x, t)ψ
†
I(x

′, t) vc(r, r
′)ψI(x

′, t)ψI(x, t),

with the field operators in the interaction picture defined by

ψI(x, t) = eiĤ0(t−t0) ψ(x) e−iĤ0(t−t0).

The expansion of the numerator in Eq. (9.22) can then be written as a series
in powers of vc. In compact notation (with (x1, t1) → 1 etc.), one obtains
(Eq. (9.24)):

− i⟨ϕip|T
[
ψ(x, t)ψ†(x′, t′) Ŝ

]
|ϕip⟩ = G0(x, t;x

′, t′)

+

∞∑
p=1

(
i

2

)p
1

p!

∫
· · ·
∫
d1 d1′ · · · dp dp′ vc(1, 1′) · · · vc(p, p′)G2p+1

0 (x, t, 1, 1′, . . . , p, p′; x′, t′, 1, 1′, . . . , p, p′).
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Here, the one-body non-interacting Green’s function is defined by (Eq. (9.25))

G0(x, t;x
′, t′) = ⟨ϕip|T

[
ψI(x, t)ψ

†
I(x

′, t′)
]
|ϕip⟩,

and the higher-order Green’s functions (which describe the propagation of mul-
tiple particles) are defined by (Eq. (9.26))

G
(s)
0 (1, 2, . . . , s; 1′, 2′, . . . , s′) = (−i)s⟨ϕip|T

[
ψI(1)ψI(2) · · ·ψI(s)ψ

†
I(s

′) · · ·ψ†
I(2

′)ψ†
I(1

′)
]
|ϕip⟩.

For instance, the two-particle Green’s function can be written as a determi-
nant (Eq. (9.27)):

G
(2)
0 (1, 2; 1′, 2′) = G0(1, 1

′)G0(2, 2
′)−G0(1, 2

′)G0(2, 1
′) =

∣∣∣∣G0(1, 1
′) G0(1, 2

′)
G0(2, 1

′) G0(2, 2
′)

∣∣∣∣ .
Similarly, the three-particle Green’s function G

(3)
0 can be expressed as a

determinant (Eqs. (9.28) and (9.29)). Although tedious to derive from first
principles, these determinant expressions show that the propagation of non-
interacting fermions inherently obeys the antisymmetry principle.

Diagrammatic Representation

The idea is to translate these cumbersome multiple integrals into a graphical
language:

• The zeroth-order contribution is simply a single propagator G0 connecting
the external points.

• At first order (with one Coulomb interaction insertion), the expansion
(Eq. (9.24)) yields six terms [see Eq. (9.28)] which are represented by
diagrams in Fig. 9.2. Here, the Coulomb interaction is drawn as a dashed
line, and the propagators as solid lines with arrows.

• The diagrams are classified as connected (where the diagram cannot be
separated into two without cutting a line) or disconnected (vacuum fluctu-
ations). In the final expression for the Green’s function, the disconnected
diagrams cancel with corresponding contributions from the denominator
(as ensured by the linked cluster theorem, discussed below).

• In higher orders (order p), one builds diagrams by connecting p Coulomb
vertices with 2p + 1 Green’s function lines. The final compact form for
the interacting Green’s function is given by (Eq. (9.36)):

G(c, c′) =

∞∑
p=0

ip
∫
[d1 d1′ · · · dp dp′] vc(1, 1′) · · · vc(p, p′)

∣∣∣∣∣∣∣∣∣
G0(c, c

′) G0(c, 1) · · · G0(c, p
′)

G0(1, c
′) G0(1, 1

+) · · · G0(1, p
′)

...
...

. . .
...

G0(p
′, c′) G0(p

′, 1) · · · G0(p
′, p′+)

∣∣∣∣∣∣∣∣∣
cd

,

where the subscript cd indicates that only connected and topologically dis-
tinct diagrams are retained.
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1 Section 9.4: Making the Story Easier – Two
Theorems

Two powerful theorems help simplify the combinatorially complex expansion of
the Green’s function.

1.1 Wick’s Theorem

Wick’s theorem provides a systematic way to express time-ordered products of
field operators in terms of normal-ordered products plus all possible contrac-
tions. For two operators, the contraction is defined as (Eq. (9.30)):

ȦḂ = ÂB̂ −N(ÂB̂),

and if the contraction yields a number (a c-number), then (Eq. (9.31)):

ȦḂ = ⟨0|ÂB̂|0⟩.

For a product of many operators, Wick’s theorem states that

ÂB̂Ĉ · · · X̂Ŷ Ẑ = N(ÂB̂Ĉ · · · X̂Ŷ Ẑ)+N
(
ȦḂĈ · · · X̂Ŷ Ẑ

)
+N

(
ȦB̂Ċ · · · X̂Ŷ Ẑ

)
+· · · ,

where all possible contractions (one pair, two pairs, etc.) are summed over (see
Eq. (9.32)).

Using Wick’s theorem, the higher-order non-interacting Green’s functions
can be expressed as determinants. For example, one obtains (Eq. (9.33)):

G
(2n+1)
0 (c, 1, 1′, 2, 2′, . . . , n, n′; c′, 1, 1′, 2, 2′, . . . , n, n′) =

∑
P

(−1)P G0(c, c̃
′)G0(1, 1̃) · · ·G0(n

′, ñ′),

where the sum runs over all permutations P of the indices in the second set.
This determinant structure naturally incorporates the antisymmetry required
by fermions.

Linked Cluster Theorem

The linked cluster theorem guarantees that the disconnected (vacuum) diagrams
cancel when one takes the ratio in Eq. (9.22). In other words, although the
expansion contains many diagrams that represent vacuum fluctuations (discon-
nected pieces), they appear both in the numerator and the denominator. When
these are properly normalized, only the connected diagrams remain. This is cru-
cial because only connected diagrams contribute to observable quantities such
as the interacting Green’s function.

For example, if in the numerator a contribution factorizes into a connected
part and a disconnected vacuum loop, the disconnected part is exactly canceled
by a similar term in the denominator. As a result, the final expression forG(c, c′)
(see Eq. (9.36)) involves only the topologically distinct, connected diagrams.
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Application to the Calculation of the Green’s Func-
tion

We now have everything in hand to write down the rules for constructing the
perturbation series of the Green’s function and to draw the corresponding Feyn-
man diagrams. Recall that the zeroth-order contribution is simply the non-
interacting one-body Green’s function G0. For each order p (i.e. with p Coulomb
interaction insertions), the procedure is as follows:

Step 1: Construct Building Blocks:

• For each Coulomb interaction vertex (represented as a dashed line),
add one Green’s function line to each end.

• Since one Coulomb vertex is a two-body operator, it contributes two
field operator pairs.

• Thus, for p vertices, we have p such building blocks.

Step 2: Assign Vertices:

• Each endpoint of an interaction line is a vertex; label it with a dot.

• A vertex represents a space–spin–time point m = (rm, σm, tm).

Step 3: Combine the Building Blocks:

• Arrange the building blocks (each consisting of two Green’s function
lines and one interaction) so that every vertex is saturated by exactly
two Green’s function lines and the entire diagram is closed, except for
one Green’s function line that remains as a single leg.

• Also, add one extra G0 to saturate the last vertex, thereby creating a
second single leg.

• In this way, the resulting diagram has two external points c and c′.

• Note that a Green’s function line that is closed on itself (representing
the density) counts as two lines, and the direction of adjacent Green’s
function lines must be continuous.

Step 4: Draw Only Connected Diagrams:

• Retain only the connected, topologically distinct diagrams.

• With the rules above, a diagram at order p will always have 2p + 1
propagator lines (i.e. 2p+ 1 occurrences of G0).

Step 5: Translate Diagrams into Equations:

• Label each vertex by a space–spin–time point m = (rm, σm, tm).

• An arrow from m′ to m denotes the propagator G0(m,m
′).

7



• A dashed line represents the Coulomb interaction:

i vc(m,m
′) = i vc(rm − rm′) δ(tm′ − tm).

• Integrate over all internal vertex coordinates.

• Each closed loop in the diagram contributes an extra factor of −1.

Step 6: Example at First Order:

• At first order (p = 1), two contributions arise (as illustrated in Fig. 9.2):

– The first contribution represents a modification of the propagation
due to the Hartree potential,

−iG0 vcG0G0 = G0vHG0.

– The second contribution is the corresponding exchange term, with
the opposite sign.

Step 7: Higher Orders:

• For second order or higher, diagrams can involve combinations of several
such scattering events.

• For instance, the two successive interactions shown on the left side of
Fig. 9.4 illustrate one possibility.

• Additionally, a new type of diagram appears (as on the right side of
Fig. 9.4) where an electron–hole pair (the bubble) is created, indicating
that the propagating particle polarizes the system. This diagram plays
a central role in later chapters (Chs. 10–15).

Step 8: Final Expression:

• All connected and topologically distinct diagrams contributing up to
second order in the interaction are illustrated in Fig. 9.5.

• Table 9.1 summarizes the Feynman rules for converting these diagrams
into equations.

• The final compact complete formula for the interacting Green’s function
is:

G(c, c′) =

∞∑
p=0

ip
∫ [ p∏

j=1

vc(j, j
′) d(j, j′)

]
det
[
G0

]
cd
, (9.36)

where the determinant is taken over a matrix of 2p + 1 G0 lines, and
the subscript cd indicates that only connected diagrams are retained.
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Example: Translating a p = 2 Diagram with
Two Density Lines

Consider an order p = 2 contribution where the external one-body propa-
gator is dressed by two interaction vertices. In this diagram, each Coulomb
interaction vertex couples to a density line. Recall that a density line is rep-
resented by a Green’s function with coinciding spatial (and nearly coinciding
time) arguments, e.g.,

G0(1, 1
+) which is proportional to the density n(1).

Diagram Construction

According to the Feynman rules for constructing the perturbation series:

• Building Blocks: Each Coulomb interaction vertex is represented by
a dashed line, with a Green’s function line attached to each of its two
endpoints (vertices).

• For p = 2:

– Two interaction vertices are inserted.

– Each vertex brings in two field operator pairs (or propagator lines).

– In total, you have the external propagator (1 pair) plus 2 × 2 = 4
extra pairs, giving 1 + 4 = 5 propagator lines.

• Density Lines: In our example, assume that at each vertex the attached
propagator forms a closed loop (i.e. the two ends of the propagator
coincide, representing the density). We denote these as G0(1, 1

+) at the
first vertex and G0(2, 2

+) at the second vertex.

Translating the Diagram into an Equation

Let c = (x, t) and c′ = (x′, t′) be the external coordinates. For a diagram
where the external propagator is modified by two Hartree-like (density) in-
sertions, the translation proceeds as follows:

1. Start with the external propagator G0(c, c
′).

2. Insert an interaction vertex at point 1. At this vertex, attach:

• A propagator G0(c, 1) connecting the external point c to vertex 1.

• A density loop G0(1, 1
+) representing the closed propagation (i.e.

the density at point 1).

• An interaction line vc(1, 1
′) connecting vertex 1 to itself (with the

understanding that 1′ is taken to be very near 1 so that G0(1, 1
′)

becomes G0(1, 1
+)).
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3. Insert a second interaction vertex at point 2. At this vertex, attach:

• A propagator G0(1, 2) connecting vertex 1 to vertex 2.

• A density loop G0(2, 2
+) at vertex 2.

• An interaction line vc(2, 2
′) with 2′ very close to 2.

4. Finally, connect vertex 2 to the external point c′ via G0(2, c
′).

Thus, the contribution from this diagram is given by:

∆G(c, c′) = i2
∫
d1 d2G0(c, 1)

[
i vc(1, 1

′)G0(1, 1
+)
]
G0(1, 2)

[
i vc(2, 2

′)G0(2, 2
+)
]
G0(2, c

′),

where the integrals run over the internal coordinates (space, time, and spin)
at points 1 and 2. Here, the factors i vc(1, 1

′) and i vc(2, 2
′) represent the

Coulomb interactions at vertices 1 and 2, respectively, with the understand-
ing that 1′ → 1+ and 2′ → 2+ to form the density loops.

Notes:

• The overall factor i2 comes from having two interaction vertices.

• The product G0(1, 1
+) is interpreted as the density n(1), and similarly

for G0(2, 2
+).

• The final diagram has 2p+ 1 = 5 Green’s function lines, as expected for
p = 2.

• In a complete expansion, one must sum over all topologically distinct,
connected diagrams at this order. This is just one example.

Dyson Equation for the One-Particle Green’s
Function and the Self-Energy

We are now ready to cast our results in a form similar to Eqs. (9.3) and
(9.4), but for the one-body Green’s function. Starting from first order, each
diagram has an ingoing and an outgoing non-interacting Green’s function
line. Therefore, as depicted schematically in Fig. 9.6, the final expression
for the interacting Green’s function can be written as the matrix equation

G = G0 +G0 ΣredG0, (9.37)

where we do not show the matrix indices. Here, Σred is the reducible (or
improper) self-energy.

Reducible Self-Energy: By definition, Σred is the sum of all Feynman
diagrams with no external lines. It is called reducible because it contains
lower-order patterns that are simply linked by one Green’s function line.
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For example, one can cut the first diagram in Fig. 9.4 in the middle and be
left with two identical first-order diagrams.

We now introduce the proper (or irreducible) self-energy, Σ, as defined in
Sec. 7.2. This quantity is the sum of only those self-energy diagrams that
cannot be separated into pieces by cutting a single Green’s function line.
Conversely, the improper self-energy is obtained by concatenating the proper
contributions via G0-lines. This relation is expressed as

Σred = Σ+ΣG0 Σ+ ΣG0 ΣG0 Σ+ · · · = Σ+ΣG0 Σred. (9.38)

Combining Eqs. (9.37) and (9.38) yields the Dyson equation (see also Eq. (7.10)):

G = G0 +G0 Σ[G0]G. (9.39)

This equation is graphically represented in Fig. 9.7. Note that at this point
the self-energy is given as a functional of G0. Although the numerical result
of the diagrammatic series depends on the system (through G0 and vc), the
functional form is universal. In Chapter 8 the self-energy is instead presented
as a functional of the fully interacting G; we discuss that further in Sec. 9.8.

Diagrammatic Interpretation: The diagrammatic representation illus-
trates how a low-order approximation to the proper self-energy generates
contributions to G at all orders. For example, Fig. 9.8 shows the first-order
contributions to the proper self-energy. These contributions are the Hartree
potential (on the left) and the Fock exchange (on the right), both evaluated
with the non-interacting G0. When these self-energy contributions are in-
serted into the Dyson equation, the resulting interacting Green’s function
contains an infinite number of interaction lines, capturing the full effect of
the Coulomb interaction.
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Appendix I: Time Evolution in the Interaction
Picture

We start by splitting the full Hamiltonian into a free part and an interaction
part:

H = H0 + V,

where H0 is the non-interacting (free) Hamiltonian and V is the interaction
term.

Operator Evolution

In the interaction picture, an operator O (denoted as OS in the Schrödinger
picture) is transformed according to:

OI(t) = eiH0(t−t0)OS e
−iH0(t−t0).

This means that the operator evolves under the free Hamiltonian H0 only.
Any explicit time dependence present in OS is carried through.

State Evolution

In contrast to operators, the state vectors in the interaction picture evolve
under the interaction V . The state |ψI(t)⟩ is given by:

|ψI(t)⟩ = UI(t, t0) |ψI(t0)⟩,

where the time-evolution operator UI(t, t0) obeys the differential equation:

d

dt
UI(t, t0) = −i VI(t)UI(t, t0),

with the initial condition:
UI(t0, t0) = I.

Interaction Picture of the Interaction

The interaction V is expressed in the interaction picture by:

VI(t) = eiH0(t−t0) V e−iH0(t−t0).

Formal Solution: The Dyson Series

The formal solution for UI(t, t0) is given by the Dyson series:

UI(t, t0) = T

{
exp

[
−i
∫ t

t0

VI(t
′) dt′

]}
,

where T denotes the time-ordering operator. Time ordering is necessary
because the interaction VI(t

′) at different times may not commute.
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Summary

In summary:

• Operator Evolution: In the interaction picture, operators evolve with
the free Hamiltonian:

OI(t) = eiH0(t−t0)OS e
−iH0(t−t0).

• State Evolution: The states evolve under the interaction through the
time-evolution operator:

|ψI(t)⟩ = UI(t, t0) |ψI(t0)⟩,

where

UI(t, t0) = T

{
exp

[
−i
∫ t

t0

VI(t
′) dt′

]}
.

This separation of the evolution into a free part (handled by the opera-
tors) and an interaction part (handled by the states) is especially useful for
developing perturbation theory, where V is treated as a small perturbation.
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Appendix II: Crash Course on Feynman Dia-
grams in Many-Body Theory

Feynman diagrams provide a powerful graphical method to organize and
compute the perturbative expansion in many-body quantum theory. In this
appendix we present a crash course on Feynman diagrams in the context
of many-body theory and discuss related topics such as the role of single
and double excitations, Brillouin’s theorem, and the treatment of vacuum
fluctuations.

Basic Ingredients

Propagators (Green’s Functions)

The bare propagator G0 represents the amplitude for a particle to prop-
agate from one space-time point to another in the absence of interactions.
For example, in frequency space:

G0(ω) =
1

ω + iη − εk
,

where εk is the single-particle energy and η is an infinitesimal ensuring
causality. In diagrams, G0 is depicted as a solid line with an arrow indi-
cating the direction of propagation.

Interaction Vertices

The Coulomb interaction (often the bare Coulomb interaction) is given
by:

vc(r − r′) =
e2

|r − r′|
.

In diagrams, it is represented by a dashed line connecting two vertices. Each
vertex represents a space-time point at which the interaction occurs and is
accompanied by an integration over that coordinate.

Feynman Rules

To translate a Feynman diagram into a mathematical expression, one gen-
erally follows these rules:

(a) Assign Propagators: For every solid line connecting two points x and
x′, include a factor G0(x, x

′) (or the dressed propagator G if self-energy
insertions are resummed).
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(b) Vertices: Each interaction vertex contributes an integration over the
corresponding space-time coordinate and a factor of the interaction
vc. Conservation of energy and momentum is imposed at each vertex
(typically via delta functions).

(c) Symmetry Factors and Signs: For fermions, account for the minus
signs arising from anticommutation relations and include symmetry fac-
tors to prevent overcounting.

(d) Time Ordering: The overall expression is time-ordered. This is han-
dled by the time-ordering operator T in the Dyson series:

UI(t, t0) = T

{
exp

[
−i
∫ t

t0

VI(t
′) dt′

]}
.

Diagrammatic Expansion of the Green’s Function

The full interacting one-particle Green’s function G can be expanded in
powers of the interaction:

G = G0 +G0 V̂ G0 +G0 V̂ G0 V̂ G0 + · · · .

In diagrammatic language:

• Zeroth Order: A single G0 line between the external points.

• First Order: Diagrams with one interaction vertex, such as the Hartree
(direct) and Fock (exchange) diagrams. Notably, in a Hartree–Fock ref-
erence the contribution from single excitations vanishes (see Brillouin’s
theorem below).

• Second Order and Higher: Diagrams with two or more vertices in-
clude processes such as electron–hole pair excitations (bubble diagrams)
that capture polarization and screening.

Single and Double Excitations and Their Dia-
grammatic Order

Single Excitations

A single excitation involves promoting one electron from an occupied orbital
to a virtual (unoccupied) orbital, thereby creating an electron–hole pair.
However, in the context of a Hartree–Fock ground state:

• Brillouin’s theorem ensures that the matrix element between the Hartree–
Fock state |ΦHF⟩ and any singly excited determinant |Φa

i ⟩ is zero:

⟨ΦHF|Ĥ|Φa
i ⟩ = 0.

• Thus, the first-order correction due to single excitations vanishes.
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Double Excitations

Double excitations involve the simultaneous excitation of two electrons (i.e.,
two electron–hole pairs). Since the Coulomb interaction is a two-body oper-
ator:

• Double excitations occur at second order in perturbation theory, in-
volving two vertices.

• These contributions do not vanish due to Brillouin’s theorem and are
crucial for capturing electron correlation, screening, and van der Waals
interactions.

Brillouin’s Theorem

Brillouin’s theorem is a key result in Hartree–Fock theory. It states that if
|ΦHF⟩ is the Hartree–Fock ground state and |Φa

i ⟩ is a singly excited deter-
minant (an electron is excited from occupied orbital i to unoccupied orbital
a), then:

⟨ΦHF|Ĥ|Φa
i ⟩ = 0.

Implications

• The Hartree–Fock ground state is variationally optimized such that
first-order mixing with singly excited determinants is zero.

• Therefore, the contribution of single excitations in first-order perturba-
tion theory vanishes, and observable electron correlation effects must
arise from double (or higher) excitations.
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Appendix III: The Slater–Condon Rules

The Slater–Condon rules provide a systematic procedure for evaluating ma-
trix elements of one-body and two-body operators between Slater determi-
nants. Since Slater determinants are antisymmetrized products of single-
particle orbitals, these rules greatly simplify the computation of expectation
values and transition matrix elements in many-electron systems. They form
the basis for methods such as Hartree–Fock theory, configuration interaction,
and many-body perturbation theory.

1.2 One-Body Operators

Consider a one-body operator Ô(1) (e.g., the kinetic energy or an external
potential), which acts on single-particle states. Let |Φ⟩ denote a Slater
determinant built from a set of orbitals.

• Diagonal matrix elements: When the bra and ket are the same
Slater determinant,

⟨Φ|Ô(1)|Φ⟩ =
∑
i∈occ

⟨ϕi|ô(1)|ϕi⟩,

where the sum runs over all occupied orbitals.

• Off-diagonal matrix elements: If |Φa
i ⟩ is a determinant that differs

from |Φ⟩ by replacing an occupied orbital ϕi with a virtual orbital ϕa,
then

⟨Φa
i |Ô(1)|Φ⟩ = ⟨ϕa|ô(1)|ϕi⟩.

For determinants differing by more than one orbital, the matrix element
is zero.

1.3 Two-Body Operators

Next, consider a two-body operator Ô(2), such as the electron–electron Coulomb
interaction. Its matrix elements between Slater determinants are more com-
plex, but the Slater–Condon rules dictate that:

• Diagonal matrix elements: For a determinant |Φ⟩,

⟨Φ|Ô(2)|Φ⟩ = 1

2

∑
i,j∈occ

(
⟨ϕiϕj |ô(2)|ϕiϕj⟩ − ⟨ϕiϕj |ô(2)|ϕjϕi⟩

)
.

• Off-diagonal matrix elements: If |Φab
ij ⟩ is a determinant obtained

from |Φ⟩ by replacing orbitals ϕi and ϕj with orbitals ϕa and ϕb, then
the nonzero matrix element is given by

⟨Φab
ij |Ô(2)|Φ⟩ = ⟨ϕaϕb|ô(2)|ϕiϕj⟩ − ⟨ϕaϕb|ô(2)|ϕjϕi⟩.
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If the determinants differ by more than two orbitals, the matrix element
vanishes.
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