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Section 9.1: The Coulomb Interaction and Perturbation Theory –
Objective

The aim is to calculate material properties via Green’s functions by treating the
Coulomb interaction as a perturbation. Since the non-interacting problem can be
solved exactly, the strategy is to expand around that solution.



Scattering Theory: Lippmann–Schwinger Equation

In scattering theory, an unperturbed state |ϕ0⟩ is modified by a perturbation V̂ .

The Lippmann–Schwinger equation is:

|ϕ⟩ = |ϕ0⟩+
1

ω − Ĥ0 + iη
V̂ |ϕ⟩. (9.1)

This can be rewritten using the non-interacting Green’s function

G0 ≡
1

ω + iη − Ĥ0

,

yielding:

|ϕ⟩ =
(
1− G0 V̂

)−1
|ϕ0⟩. (9.2)



Connecting Scattering Theory to Perturbation Theory

The expansion (
1− G0 V̂

)−1
= 1 + G0 V̂ + G0 V̂ G0 V̂ + · · · ,

is the perturbative (Born) series.

Each term in the series corresponds to successive scattering events.

This series forms the basis for constructing the full Green’s function.



From Scattering to the Dyson Equation

The full Green’s function is defined by:

G (ω) ≡ 1

ω + iη − Ĥ
,

where Ĥ = Ĥ0 + V̂ .

Using the series expansion from scattering theory, we have:

G = G0 + G0 V̂ G0 + G0 V̂ G0 V̂ G0 + · · · .

This expansion is compactly written as the Dyson equation:

G = G0 + G0ΣG , (9.3)

where the self-energy Σ summarizes all scattering (interaction) processes.



Scattering in the Continuum and Green’s Functions

In the continuum, the eigenstates are extended (scattering states) rather than
bound.

Physical observables (e.g. scattering amplitudes) depend on the asymptotic
behavior of these states.

The Green’s function, with its iη prescription, encodes the causal propagation of
scattering states.

Thus, in the continuum limit, we only need the asymptotic (scattered) part of the
wavefunction to compute observables.



Continuum Eigenstates: Single-Particle vs. Many-Body

In scattering theory, energies in the continuum correspond to extended states.

For a non-interacting Hamiltonian, these eigenstates are typically single-particle
states (e.g. plane waves) that are not normalizable.

In a full many-body system, the eigenstates are many-body states (often
combinations of many Slater determinants) and are also extended.

When working with one-particle Green’s functions, we usually consider transitions
where an electron is added or removed. In this effective picture, the relevant
excitations are often treated as single-particle (or quasi-particle) states.

Thus, while the full spectrum of the many-body Hamiltonian is built from
many-body eigenstates, in practical scattering and Green’s function calculations
we often focus on the effective single-particle excitations that live in the
continuum.



Section 9.1: Perturbation Theory Approaches
Brillouin–Wigner Perturbation Theory:

E = Eip +
∞∑
n=1

⟨ϕip| V̂
(

1

1− P̂

1

E − Ĥ0

V̂

)n−1

|ϕip⟩, (9.5)

and

|Φ⟩ =
∞∑
n=0

(
1

1− P̂

1

E − Ĥ0

V̂

)n

|ϕip⟩. (9.6)

Rayleigh–Schrödinger Perturbation Theory:

E = Eip +
∞∑
n=1

⟨ϕip| V̂

(
1

Eip − Ĥ0

(Eip − E + V̂ )

)n−1

|ϕip⟩, (9.7)

and

|Φ⟩ =
∞∑
n=0

(
1

Eip − Ĥ0

(Eip − E + V̂ )

)n

|ϕip⟩. (9.8)



Section 9.1: Møller–Plesset Perturbation Theory

Instead of treating the full Coulomb interaction as a perturbation, a part is
incorporated into a mean-field Hamiltonian.

Zeroth-order energy: Sum of occupied HF eigenvalues.

First-order correction is

E (1) = ⟨ϕip| V̂ |ϕip⟩ = −
∑
i<j

(vijji − vijij) , (9.9)

so that Eip + E (1) equals the HF total energy.

Second-order correction (MP2):

E (2) =
occ∑
i<j

empty∑
a<b

|vijab − vijba|2

εi + εj − εa − εb
. (9.11)



Section 9.2: Objective

This section addresses the difficulty that the interacting ground state appears explicitly
in the Green’s function expressions. The strategy is to connect the non-interacting and
interacting systems via adiabatic switching.



Adiabatic Switching-On of the Interaction

The Coulomb interaction is slowly switched on using a time-dependent form:

vη(t) = vc e
−η|t|, η → 0+.

At t → ±∞, the interaction is off; at t = 0, the full interaction is present.



Time Evolution Operator in the Interaction Picture
In the interaction picture, the full Hamiltonian is split as:

H = H0 + V ,

where H0 is the non-interacting (free) part and V is the interaction.

The time evolution operator UI (t, t0) evolves states according to the interaction:

|ψI (t)⟩ = UI (t, t0) |ψI (t0)⟩.

UI (t, t0) satisfies the differential equation:

d

dt
UI (t, t0) = −i VI (t)UI (t, t0), UI (t0, t0) = I ,

where the interaction-picture operator is given by:

VI (t) = e iH0(t−t0) V e−iH0(t−t0).

The formal solution is expressed as a time-ordered exponential:

UI (t, t0) = T

{
exp

[
−i

∫ t

t0

VI (t
′) dt′

]}
.



Understanding the Time-Ordered Series
The time evolution operator in the interaction picture is defined as

UI (t, t0) = T

{
exp

[
−i

∫ t

t0

VI (t
′) dt′

]}
,

where T denotes time ordering.

The role of T is to rearrange operators so that those with later times appear to the left:

T{VI (t1)VI (t2)} =

{
VI (t1)VI (t2), t1 > t2,

VI (t2)VI (t1), t2 > t1.

Expanding the exponential yields:

UI (t, t0) = 1 + (−i)

∫ t

t0

dt1 VI (t1) +
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2 T{VI (t1)VI (t2)}+ · · · .

Equivalently, by using ordered integration limits we can write:

UI (t, t0) = 1 + (−i)

∫ t

t0

dt1 VI (t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2 VI (t1)VI (t2) + · · · .

Each term is “sorted in orders of V ” – the nth term is proportional to V n.



Propagating the Ground State In the interaction picture

In the interaction picture, we propagate the non-interacting ground state |ϕip⟩ from
t = −∞ to time t and further to t = ∞.

The time evolution operator UI (t, t0) connects the non-interacting state to the
interacting state.

This gives the relation:

⟨ϕ+η |ÔH(t)|ϕ−η ⟩ = ⟨ϕip|UI (∞, t) ÔI (t)UI (t,−∞)|ϕip⟩.

Here, ÔH(t) is the operator in the Heisenberg picture and ÔI (t) in the interaction
picture.



Normalization and Removal of Divergent Phases

Direct propagation introduces divergent phases due to adiabatic switching.

To cancel these divergences, we normalize the expectation value by the overlap of
the evolved states.

The normalized expression is:

⟨ϕ+η |ÔI (t)|ϕ−η ⟩
⟨ϕ+η |ϕ−η ⟩

=
⟨ϕip|UI (∞, t) ÔI (t)UI (t,−∞)|ϕip⟩

⟨ϕip|UI (∞,−∞)|ϕip⟩
.

This ratio ensures that the divergent phase factors cancel, leaving a well-defined
expression.



Expansion of the Expectation Value

The time evolution operator UI can be expanded in a Dyson series, order by order
in the interaction VI .

The expansion for the expectation value of an operator ÔH(t) becomes:

lim
η→0

⟨ϕ+η |ÔH(t)|ϕ−η ⟩ = lim
η→0

∞∑
p=0

(−i)p

p!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtp e−η(|t1|+···+|tp |)

×⟨ϕip|T{VI (t1) · · ·VI (tp)ÔI (t)}|ϕip⟩ ⟨ϕip|Sη|ϕip⟩. (9.20)

Here:

T denotes time ordering.
Sη = UI (∞,−∞) is the full time-evolution (scattering) operator.
The exponential factors e−η|ti | implement adiabatic switching.

This expansion forms the basis for the diagrammatic representation of the
interacting Green’s function.



Connecting Ground States and the Gell-Mann–Low Theorem

Propagate the non-interacting ground state |ϕip⟩ from t = −∞ to t = 0 using UI .

Define the states |ϕ−η (t)⟩ and |ϕ+η (t)⟩ by forward and backward propagation,
respectively.

In the limit η → 0, these states converge to the true interacting ground state |ϕ0⟩
(This is the main hypotehsis of adiabatic switching).

Expectation values are computed as:

⟨O⟩ =
⟨ϕ+η |O|ϕ−η ⟩
⟨ϕ+η |ϕ−η ⟩

.

This is the Gell-Mann–Low theorem guarantees that adiabatic switching connects
the non-interacting ground state to an interacting state (No necessarily the ground
state!!, although we assume so.).



Interacting Green’s Function

The zero-temperature interacting Green’s function is:

G (x , t; x ′, t ′) = −i
⟨ϕip|T{ψI (x , t)ψ

†
I (x

′, t ′)Sη} |ϕip⟩
⟨ϕip| Sη |ϕip⟩

,

where
Sη ≡ UI (∞,−∞).



Diagrammatic Expansion of the Green’s Function

The interacting Green’s function at zero temperature is given by:

G (x , t; x ′, t ′) = −i
⟨ϕip|T

[
ψ(x , t)ψ†(x ′, t ′) Ŝ

]
|ϕip⟩

⟨ϕip|Ŝ |ϕip⟩
, (9.22)

where Ŝη = UI (∞,−∞).

The Coulomb interaction in the interaction picture is:

V̂I (t) =
1

2

∫
dx dx ′ ψ†

I (x , t)ψ
†
I (x

′, t) vc(r , r
′)ψI (x

′, t)ψI (x , t). (9.23)

Expanding the numerator yields a series in powers of vc .



Compact Notation for the Diagrammatic Expansion

In compact notation, the expansion becomes (schematically):

− i⟨ϕip|T
[
ψ(x , t)ψ†(x ′, t ′) Ŝ

]
|ϕip⟩ = G0(x , t; x

′, t ′)

+
∞∑
p=1

(
i

2

)p 1

p!

∫
· · ·
∫
d1 d1′ · · · dp dp′ vc(1, 1′) · · · vc(p, p′)

× G 0
2p+1

(
x , t, 1, 1′, . . . , p, p′; x ′, t ′, 1, 1′, . . . , p, p′

)
.

Here, G 0
s denotes the non-interacting Green’s function involving s pairs of field

operators).



Understanding the Notation G 0
(2p+1)

The one-body Green’s function is defined as

G 0(x , t; x ′, t ′) = ⟨ϕip|T
[
ψI (x , t)ψ

†
I (x

′, t ′)
]
|ϕip⟩,

which we can denote as G
(1)
0 (i.e. one pair of field operators or one propagator

line).

In our perturbative expansion (Eq. (9.24)), each Coulomb vertex (a two-body
operator) effectively adds one extra pair of field operators.

Therefore, when p vertices are inserted:

Total number of operator pairs = 1 + 2p = 2p + 1,

meaning that the corresponding Green’s function involves 2p + 1 propagator lines
(or equivalently, 2(2p + 1) individual field operators).

Thus, the notation G 0
(2p+1) denotes the non-interacting Green’s function

constructed from a time-ordered product corresponding to 2p + 1 propagator lines.

Here, p is the order of the perturbation (i.e. the number of Coulomb interaction
insertions).



Recap and Physical Interpretation

The expansion in Eq. (9.24) reads schematically as:

− i⟨ϕip|T
[
ψ(x , t)ψ†(x ′, t ′) Ŝ

]
|ϕip⟩ = G 0(x , t; x ′, t ′)

+
∞∑
p=1

(
i

2

)p 1

p!

∫
· · ·
∫
d1 d1′ · · · dp dp′ vc(1, 1′) · · · vc(p, p′)

× G 0
(2p+1)

(
x , t, 1, 1′, . . . , p, p′; x ′, t ′, 1, 1′, . . . , p, p′

)
.

The subscript 2p + 1 in G 0
(2p+1) indicates that, after inserting p Coulomb vertices,

The original two external operators are supplemented by 2p operators from the
vertices.
This results in a Green’s function containing a total of 2p+ 1 propagator lines.

In this context, p is indeed the order of the perturbation, and the notation reflects
how the diagrammatic structure grows with each interaction insertion.



Wick’s theorem: Determinant Structure of G
(2n+1)
0

Wick’s theorem lets us express a time-ordered product of many field operators as a
sum over all possible complete contractions.
For the higher-order non-interacting Green’s function, which involves 2n + 1 pairs
of field operators, this sum can be written compactly as a determinant:

G
(2n+1)
0 (c , 1, 1′, 2, 2′, . . . , n, n′; c ′, 1, 1′, 2, 2′, . . . , n, n′) =

∑
P

(−1)P G0(c , c̃
′) · · ·G0(n, ñ)G0(n

′, ñ′),

Here:
The sum is over all permutations P connecting the field operator pairs from
the bra and ket.
(−1)P is the sign of the permutation, ensuring the overall antisymmetry
required for fermions.
G0(c , c̃

′), etc., represent the one-body non-interacting Green’s functions
obtained from each contraction.

This determinant structure compactly encodes all the direct and exchange
contributions arising from all possible pairings.
It is a powerful simplification that naturally accounts for the antisymmetry of the
fermionic many-body wavefunction.



Linked Cluster Theorem

The linked cluster theorem guarantees that disconnected (vacuum) diagrams cancel
out when the Green’s function is properly normalized.

Although the expansion contains many disconnected diagrams, they appear in both
the numerator and denominator and cancel.

Thus, only the connected diagrams contribute to the physical Green’s function.



Application to the Calculation of the Green’s Function (Overview)

Our goal is to construct the perturbation series for the interacting Green’s function
G and to express it in a compact form using Feynman diagrams.

The zeroth-order term is simply the non-interacting one-body Green’s function, G0.

At order p in the perturbation, we introduce p Coulomb interaction vertices.

Each Coulomb vertex (depicted as a dashed line) is a two-body operator and has
two endpoints (vertices) where a G0 line is attached.

Thus, each interaction vertex adds two pairs (or propagator lines) to the diagram.
Combined with the original external G0 (one pair), the diagram at order p will have
1 + 2p = 2p + 1 G0 lines.



Constructing the Diagrams

Step 1: Building Blocks

For each Coulomb interaction vertex, add one G0 line to each of its two
endpoints.
Each endpoint is a vertex (labeled by a space–spin–time coordinate
m = (rm, σm, tm)) and is marked with a dot.

Step 2: Assembling the Diagram

Combine these building blocks so that every vertex is saturated by two G0

lines, and the whole diagram is closed, except for one extra G0 line that forms
a single leg.
Finally, add one external G0 to saturate the last vertex, yielding two external
points c and c ′.

Counting: At order p, the diagram has 2p + 1 propagator lines corresponding to
the 2p + 1 pairs of field operators.



Translating Diagrams into Equations

Once the diagram is constructed, we translate it into an equation by following
these rules:

Vertex Labeling: Each vertex is labeled as m = (rm, σm, tm).
Propagators: An arrow from vertex m′ to vertex m denotes the
non-interacting Green’s function G0(m,m

′).
Interaction Lines: A dashed line is used to represent the Coulomb interaction:

i vc(m,m
′) = i

e2

|rm − rm′ |
δ(tm′ − tm).

Integration: Integrate over all internal vertex coordinates (space, time, and
spin).
Closed Loops: Each closed loop (where a G0 line forms a self-loop,
representing the density) contributes an extra factor of −1.

Only connected and topologically distinct diagrams are retained (vacuum
fluctuations cancel between numerator and denominator).



Bare Propagator



First Order Diagrams



Second order Diagrams (Incomplete)



From diagrams to Equations



Example: First- and Second-Order Contributions
First Order (p = 1):

Two contributions arise (see Fig. 9.2):
The Hartree term: a modification of the propagation due to the
mean-field potential, written as

−i G0 vc G0 G0 = G0 vH G0.

The Exchange term: similar to the Hartree term but with an opposite
sign due to exchange.

Second Order (p = 2):
Diagrams involve two interaction vertices. For instance, one diagram might
have two successive interactions where the external propagator is modified by
two density insertions, and other diagrams include bubble structures
(electron–hole pair creation).

The final, compact expression for the interacting Green’s function is given by

G (c , c ′) =
∞∑
p=0

ip
∫ p∏

j=1

[
vc(j , j

′) d(j , j ′)
]
det
[
G0

]
cd
, (9.36)

where the determinant is taken over a matrix of 2p + 1 G0 lines and the subscript
cd indicates that only connected diagrams are retained.



First and Second order Diagrams



Example: Diagrammatic Setup for p = 2

External Points:

c = (x , t) (entry point)
c ′ = (x ′, t ′) (exit point)

Interaction Vertices:

Two vertices (labeled 1 and 2), depicted as dots.
Each vertex corresponds to a Coulomb interaction (dashed line) and adds two
pairs of field operators.

Density Lines (Self-Loops):

At each vertex, one of the attached propagators forms a closed loop.
These self-loops represent the density at that vertex (e.g., G0(1, 1

+) at vertex
1).

Overall Counting:

At zeroth order, G0 involves 1 pair.
With p = 2 vertices, the total number of propagator pairs is 1 + 2× 2 = 5.



Translating the p = 2 Diagram into an Equation

Step 1: External Propagator The external propagation from c to c ′ is given by
G0(c, c

′).

Step 2: First Interaction Vertex (at Point 1)

The external line propagates from c to vertex 1: G0(c, 1).
At vertex 1, a Coulomb interaction occurs, represented by i vc(1, 1

′), where in
the equal-time limit 1′ → 1+.
A self-loop (density line) attaches at vertex 1: G0(1, 1

+).

Step 3: Connection Between Vertices A propagator G0(1, 2) connects vertex 1
to vertex 2.

Step 4: Second Interaction Vertex (at Point 2)

At vertex 2, a Coulomb interaction i vc(2, 2
′) occurs (with 2′ → 2+).

A self-loop attaches at vertex 2: G0(2, 2
+).

Step 5: Final External Propagation A propagator G0(2, c
′) connects vertex 2 to

the external point c ′.



Final Equation and Interpretation
Combining all pieces, the contribution from this p = 2 diagram is:

∆G (c , c ′) = i2
∫

d41 d42 G0(c, 1)
[
i vc(1, 1

′)G0(1, 1
+)
]
G0(1, 2)

[
i vc(2, 2

′)G0(2, 2
+)
]
G0(2, c

′),

where:

d41 and d42 denote integration over the space-time (and spin) coordinates at
points 1 and 2.
The interaction is given by

vc(1, 1
′) =

e2

|r1 − r1′ |
δ(t1′ − t1),

and similarly for vc(2, 2
′).

The limits 1′ → 1+ and 2′ → 2+ indicate the self-loop (density) structure.

Interpretation: This equation represents a scenario in which the external particle
propagates from c to c ′ while being scattered twice. Each scattering event at
vertices 1 and 2 introduces an interaction with the electron density (density loop)
at that vertex.



The Dyson Equation for the one-particle Green’s function, and the
self-energy

The goal is to express the interacting one-body Green’s function G in terms of the
non-interacting propagator G0 and the self-energy.

Starting from the diagrammatic expansion, each diagram has an ingoing and an
outgoing G0 line.

Schematically, we write:
G = G0 + G0Σred G0

where Σred is the reducible (or improper) self-energy.

Σred represents the sum of all diagrams with no external lines.



Reducible vs. Proper Self-Energy

The reducible self-energy, Σred, contains diagrams that can be separated into
lower-order pieces by cutting a single G0 line.

We introduce the proper (irreducible) self-energy Σ, which is the sum of only those
diagrams that remain connected when any single G0 line is cut.

The reducible self-energy is built by concatenating proper self-energy parts with G0

lines:
Σred = Σ+ΣG0Σ+ ΣG0ΣG0Σ+ · · · = Σ+ΣG0Σred.



Combining to Obtain the Dyson Equation

By substituting Eq. (9.38) into Eq. (9.37), we obtain the Dyson equation:

G = G0 + G0Σ[G0]G

where Σ[G0] indicates that the self-energy is, at this stage, expressed as a
functional of G0.

Diagrammatically, this corresponds to an infinite series of terms in which
lower-order self-energy insertions are summed to yield the full interacting Green’s
function.

In later chapters, the self-energy is re-expressed as a functional of the fully
interacting G ; however, at this point the functional dependence on G0 (and vc) is
universal.



Summary and Physical Interpretation

The Dyson equation,
G = G0 + G0Σ[G0]G ,

provides a compact way to sum an infinite series of Feynman diagrams.

Σred (the reducible self-energy) is built from proper self-energy diagrams Σ linked
by G0 propagators.

This formulation effectively resums many interaction processes, capturing both
direct and exchange contributions.

Ultimately, only connected, topologically distinct diagrams contribute to the
physical Green’s function, ensuring that the final result describes the true
interacting system.



Appendix I: Time Evolution in the Interaction Picture

Split the full Hamiltonian:
H = H0 + V .

Operator evolution:
OI (t) = e iH0(t−t0)OS e

−iH0(t−t0).

State evolution:
|ψI (t)⟩ = UI (t, t0) |ψI (t0)⟩,

with

UI (t, t0) = T

{
exp

[
−i

∫ t

t0

VI (t
′) dt ′

]}
.



Appendix II: Feynman Diagrams in Many-Body Theory – Basics

Propagators: The bare propagator G0(ω) represents the amplitude for a particle
to propagate:

G0(ω) =
1

ω + iη − εk
.

Interaction Vertices: The Coulomb interaction:

vc(r − r ′) =
e2

|r − r ′|
,

is depicted by dashed lines.



Appendix II: Feynman Diagrams – Rules and Expansion

Feynman Rules:

(a) Assign a propagator G0 to each line.
(b) Each interaction vertex contributes a factor of vc and an integration over

space-time.
(c) Include symmetry factors and minus signs (for fermions).

Diagrammatic Expansion: The full Green’s function is expanded as:

G = G0 + G0 V̂ G0 + G0 V̂ G0 V̂ G0 + · · · .



Appendix II: Single & Double Excitations and Brillouin’s Theorem

Single Excitations: Promoting one electron from an occupied to an unoccupied
orbital. Brillouin’s theorem tells us:

⟨ΦHF|Ĥ|Φa
i ⟩ = 0.

Double Excitations: Simultaneous excitation of two electrons. These contribute
at second order.



Appendix II: Vacuum Fluctuations and the Linked Cluster Theorem

Disconnected (vacuum) diagrams appear in the expansion.

The linked cluster theorem guarantees that these cancel in the normalized Green’s
function.



Appendix III: Overview of the Slater–Condon Rules

The Slater–Condon rules provide a systematic way to evaluate matrix elements of
one-body and two-body operators between Slater determinants.

A Slater determinant is an antisymmetrized product of single-particle orbitals
representing a many-electron wave function.

These rules are essential in quantum chemistry and many-body physics for
simplifying calculations in methods like Hartree–Fock and configuration interaction.



One-Body Operators

A one-body operator, Ô(1), (e.g. kinetic energy or an external potential) acts on a
single electron.

Diagonal matrix elements:

⟨Φ|Ô(1)|Φ⟩ =
∑
i∈occ

⟨ϕi |ô(1)|ϕi ⟩.

Off-diagonal matrix elements: Nonzero only if the two Slater determinants differ
by one orbital. The matrix element is given by the single-particle integral:

⟨Φa
i |Ô(1)|Φ⟩ = ⟨ϕa|ô(1)|ϕi ⟩,

where |Φa
i ⟩ is obtained by replacing the occupied orbital ϕi with a virtual orbital ϕa.



Two-Body Operators

A two-body operator, Ô(2), (e.g. the Coulomb interaction) acts on pairs of
electrons.

Diagonal matrix elements:

⟨Φ|Ô(2)|Φ⟩ = 1

2

∑
i ,j∈occ

(
⟨ϕiϕj |ô(2)|ϕiϕj⟩ − ⟨ϕiϕj |ô(2)|ϕjϕi ⟩

)
.

Off-diagonal matrix elements: Nonzero only if the determinants differ by at
most two orbitals.

For determinants that differ by two orbitals (say, ϕi , ϕj replaced by ϕa, ϕb):

⟨Φab
ij |Ô(2)|Φ⟩ = ⟨ϕaϕb|ô(2)|ϕiϕj⟩ − ⟨ϕaϕb|ô(2)|ϕjϕi ⟩.

If the determinants differ by more than two orbitals, the matrix element is zero.



Appendix IV: Interaction Picture for time evolution of Operators and
States



Heisenberg Representation

In the Heisenberg picture, all time dependence is transferred to the operators.

The time evolution of an operator Ô is given by:

ÔH(t) = e
iHt
ℏ ÔS e

− iHt
ℏ ,

where H is the full Hamiltonian.

State vectors: They remain time-independent.



Splitting the Hamiltonian

In the interaction picture, the Hamiltonian is split as:

H = H0 + HI ,

where:

H0 is the “free” (solvable) part.
HI is the interaction (perturbation).



Operator Evolution in the Interaction Picture

Operators evolve according to the free Hamiltonian H0:

ÔI (t) = e
iH0t
ℏ ÔS e

− iH0t
ℏ .

This is similar to the Heisenberg picture but with H0 replacing H.



State Evolution in the Interaction Picture

The state vectors in the interaction picture are defined as:

|ψI (t)⟩ = e
iH0t
ℏ |ψS(t)⟩.

They evolve with the interaction Hamiltonian in the interaction picture:

iℏ
d

dt
|ψI (t)⟩ = H I

I (t) |ψI (t)⟩,

where the interaction Hamiltonian is

H I
I (t) = e

iH0t
ℏ HI e

− iH0t
ℏ .



Heisenberg vs. Interaction Picture

Heisenberg Representation:

Operators: ÔH(t) = e
iHt
ℏ ÔS e

− iHt
ℏ (full H).

States: Time-independent.

Interaction Representation:

Operators: ÔI (t) = e
iH0t
ℏ ÔS e

− iH0t
ℏ (only H0).

States: Evolve with the interaction:

iℏ
d

dt
|ψI (t)⟩ = H I

I (t) |ψI (t)⟩.

Key Point: The interaction picture isolates the perturbative part HI into the
state evolution, making it ideal for perturbation theory.
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