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1 Introduction

The chapter develops a functional formulation for interacting many–particle systems. Instead of
working directly with the many–body wavefunction, one describes physical quantities as functionals
of a key observable (or set of observables). Examples include:

• The electron density n(r) in Density Functional Theory (DFT).

• The one–particle Green’s function G and the associated self–energy Σ.

• The screened Coulomb interaction W and its related functional.

This approach underpins many practical methods (such as the GW approximation, Dynamical
Mean–Field Theory (DMFT), and conserving approximations) and provides a variational basis
that automatically incorporates conservation laws.

2 Functionals of G in the Density Functional Theory and the
Hartree–Fock Approximations

This section reformulates Density Functional Theory (DFT) in a way that connects the density-
based approach with a Green’s function formulation. It introduces the Kohn–Sham auxiliary system
and the finite-temperature Mermin generalization. A key idea is to express the grand potential not
only as a functional of the electron density n(r) but also in terms of the one–particle Green’s
function GKS. This approach clarifies the variational basis of DFT and provides a foundation for
systematic many-body approximations.

2.1 Variational Principle and Density Functionals

The starting point is the variational principle. In its general form, the total energy is written as

E[Ψ] = ⟨Ψ|Ĥ|Ψ⟩,

and if the trial wavefunction is sufficiently flexible, the condition

δE[Ψ]

δΨ
= 0

leads to the many–body Schrödinger equation. In DFT, one recasts the energy as a functional of
the electron density:

E[n] with
δE[n]

δn(r)
= 0,

so that the ground-state energy is E0 = E[n0] for the true density n0(r).
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2.2 The Kohn–Sham Auxiliary System and Green’s Function Formulation

To make the variational problem tractable, Kohn and Sham introduced an auxiliary system of non-
interacting particles that reproduces the interacting density. In the Green’s function formulation,
this is expressed via the Kohn–Sham Green’s function GKS, which satisfies a Dyson-like equation:

GKS = G0 +G0 vHxcGKS, (1)

or, equivalently,
G−1

KS = G−1
0 − vHxc, (2)

where:

• G0 is the Green’s function of a non-interacting reference system.

• vHxc(r) = vH(r) + vxc(r) is the effective potential combining the classical Hartree potential
vH with the exchange–correlation potential vxc.

The electron density is recovered from GKS via

n(x) = −iGKS(x, t;x, t
+).

2.3 The Mermin Functional and the Grand Potential

At finite temperature, the Mermin functional extends DFT by defining the grand potential as

Ω = E − TS − µN.

Within the Kohn–Sham framework, the grand potential is written as

ΩKS
M = Ωxc[n] + EH [n]−

∫
dr vHxc(r)n(r) + Ωip[veff], (3)

with the effective potential defined by

veff(r) = vext(r) + vH(r) + vxc(r). (4)

Here:

• EH [n] is the Hartree energy, given by

EH [n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
,

representing the classical Coulomb repulsion between electrons.

• Ωxc[n] is the exchange–correlation grand potential functional that incorporates many-body
quantum effects (exchange and correlation) beyond the classical Hartree term.
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3 Avoiding Double Counting in the Kohn–Sham Grand Potential

In the Kohn–Sham formulation, the finite-temperature grand potential is given by

ΩKS
M = Ωxc[n] + EH [n]−

∫
dr vHxc(r)n(r) + Ωip[veff ],

where:

• EH [n] is the Hartree energy,

EH [n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′|
,

• vHxc(r) = vH(r) + vxc(r) is the effective potential due to electron–electron interactions,

• veff (r) = vext(r) + vHxc(r) is the total effective potential experienced by the electrons, and

• Ωip[veff ] is the grand potential of independent (non-interacting) particles in the potential
veff (r).

At first glance, it may seem that the Hartree term appears twice:

• Directly in EH [n], which represents the classical Coulomb repulsion between electrons.

• Implicitly within vHxc(r) and thus in the effective potential veff (r) used in Ωip[veff ].

How double counting is avoided:

1. Independent-Particle Contribution: The term Ωip[veff ] is computed for non-interacting
electrons moving in the effective potential veff (r) = vext(r) + vHxc(r). In this calculation,
the energy contribution from the Hartree potential vH(r) is already included.

2. Subtraction Term: To compensate for this, the term

−
∫
dr vHxc(r)n(r)

is subtracted. This subtraction removes the part of the electron–electron interaction that
would otherwise be counted twice.

3. Addition of the Explicit Hartree Energy: Finally, the Hartree energy EH [n] is added
separately. This ensures that the classical Coulomb repulsion is properly accounted for with-
out overcounting.

Thus, the combination of the independent-particle term Ωip[veff ] and the subtraction−
∫
dr vHxc(r)n(r)

acts as a double counting correction. The net effect is that each contribution (the Hartree energy,
exchange–correlation energy, and kinetic energy) is counted only once.
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3.1 Connection Between Density and Green’s Function Formulations

In order to exploit the analogy between the density n(r) and the Green’s function G, we can
re-express terms in the Mermin functional in terms of the Kohn–Sham Green’s function GKS.

For example, the term ∫
dr vHxc(r)n(r)

can be rewritten as a trace over the Green’s function:∫
dr vHxc(r)n(r) = Tr(vHxcGKS). (5)

This equivalence (Equation (8.5)) provides a bridge between the density-based description and the
Green’s function formalism.

Furthermore, by using the Dyson equation (2), one can express the interacting grand potential
in a compact form. The full expression (Equation (8.6)) is written as:

ΩKS
M = Ωxc[n] + EH [n]− Tr(vHxcGKS)− Tr ln

(
1−G0 vHxc

)
+Ω0, (6)

where:

• Tr(vHxcGKS) represents the linear coupling of the effective potential with the Green’s function.

• Tr ln
(
1−G0 vHxc

)
arises from rewriting the determinant of the interacting propagator. Specif-

ically, since
G−1

KS = G−1
0 − vHxc,

one can write
−G−1

KS = −G−1
0

[
1−G0 vHxc

]
.

Taking the logarithm and using ln(AB) = lnA+ lnB yields the logarithmic term. Its expan-
sion as

Tr ln
(
1−G0 vHxc

)
= −

∞∑
n=1

1

n
Tr

[
(G0 vHxc)

n
]

shows that it sums an infinite series of corrections due to repeated insertions of vHxc into the
free propagator.

3.2 Summary of Section 8.1

1. Variational Principle: The total energy E[Ψ] is expressed as a functional of the many-body
wavefunction and recast in terms of the electron density n(r) via DFT:

E[n] with
δE[n]

δn(r)
= 0.

2. Kohn–Sham Auxiliary System: An auxiliary non-interacting system is introduced such
that its density matches that of the interacting system. In the Green’s function formulation, the
Kohn–Sham Green’s function GKS satisfies:

GKS = G0 +G0 vHxcGKS,
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or
G−1

KS = G−1
0 − vHxc,

where vHxc(r) = vH(r) + vxc(r).
3. Mermin Functional and the Grand Potential: At finite temperature, the grand

potential is expressed as

ΩKS
M = Ωxc[n] + EH [n]−

∫
dr vHxc(r)n(r) + Ωip[veff],

with veff(r) = vext(r) + vH(r) + vxc(r). Here, EH [n] is the classical Hartree energy, and Ωxc[n] is
the exchange–correlation grand potential functional.

4. Connecting Density and Green’s Function Formulations: The density integral can
be recast as ∫

dr vHxc(r)n(r) = Tr(vHxcGKS).

Using the Dyson equation, one derives the full expression:

ΩKS
M = Ωxc[n] + EH [n]− Tr(vHxcGKS)− Tr ln

(
1−G0 vHxc

)
+Ω0.

The logarithmic term, Tr ln(1−G0vHxc), sums an infinite series of higher-order corrections due to
repeated interactions with the effective potential, ensuring that all many-body effects are properly
incorporated.

Equations (8.5) and (8.6) (or their equivalent forms above) build a bridge between the density-
based DFT and the Green’s function many-body formalism. They establish:

• How the classical Hartree energy EH [n] and the exchange–correlation functional Ωxc[n] con-
tribute to the grand potential.

• The role of the effective potential vHxc and its coupling to the Green’s function via Tr(vHxcGKS).

• The necessity of the logarithmic term, Tr ln(1 − G0vHxc), to account for an infinite series of
interaction corrections.

Section 8.1 lays the foundation for the subsequent development of Green’s function functionals.
By expressing the Kohn–Sham DFT in terms of GKS and incorporating the Mermin extension, we
establish a variational formulation that connects density-based and Green’s function approaches.
Equations (8.5) and (8.6) are central to this formulation, as they:

1. Convert spatial integrals over the density and effective potential into trace operations involv-
ing GKS.

2. Introduce the Tr ln(1−G0vHxc) term, which compactly sums an infinite series of many-body
corrections.

This framework not only clarifies the internal consistency of DFT but also provides a natural path
to advanced methods such as GW and DMFT.

4 Functionals of the Green’s Function G and Self–Energy Σ

Section 8.2 develops a variational formulation of many–body theory in which the grand potential
is expressed as a functional of the interacting one–particle Green’s function G and its associated
self–energy Σ. The goal is to provide a framework that unifies density-functional methods with
many-body perturbation theory.
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4.1 The Luttinger–Ward Functional

A central object in this formulation is the Luttinger–Ward functional, denoted Φ[G]. It is
defined as the sum over all skeleton diagrams constructed with the full interacting Green’s function
G. Although the explicit diagrammatic series is not given here, the key properties are:

• Φ[G] is a universal functional, independent of the external potential.

• It contains all the many-body interaction effects in the system.

A crucial relation is that the self–energy Σ is obtained as the functional derivative of Φ[G] with
respect to G:

Σ =
δΦ[G]

δG
. (7)

This relation is a key element in the variational formulation and ensures that, when the grand
potential is minimized, the Dyson equation is recovered.

4.2 Expression for the Grand Potential

The grand potential Ω of the interacting system can be expressed as:

Ω = Φ[G]− Tr(ΣG)− Tr ln
(
1−G0Σ

)
+Ω0, (8)

where:

• G0 is the non-interacting Green’s function.

• Ω0 is the grand potential of the non-interacting system.

• The term Tr(ΣG) represents the first-order (linear) contribution from the interaction.

• The logarithmic term, Tr ln(1−G0Σ), arises from rewriting the determinant of the interacting
inverse Green’s function. Specifically, using the Dyson equation

G−1 = G−1
0 − Σ,

one can factorize the operator as:

−G−1 = −G−1
0

[
1−G0Σ

]
.

Taking the logarithm and using the property ln(AB) = lnA+lnB yields the Tr ln term. This
term, when expanded as a series,

Tr ln
(
1−G0Σ

)
= −

∞∑
n=1

1

n
Tr

[
(G0Σ)

n
]
,

sums an infinite series of higher-order corrections due to repeated insertions of the interaction.
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4.3 Physical Interpretation and Variational Principle

This formulation has several important features:

1. Unified Description: The grand potential is expressed solely in terms of the one–particle
Green’s function G and the self–energy Σ. This bridges density functional approaches and
many-body perturbation theory.

2. Variational Character: The physical Green’s function is determined by the condition that
Ω is stationary with respect to variations in G. The relation

Σ =
δΦ[G]

δG

ensures that the Dyson equation
G−1 = G−1

0 − Σ

is satisfied at the stationary point.

3. Role of the Logarithmic Term: The Tr ln(1 − G0Σ) term sums over all higher-order
corrections. It captures the many-body effects beyond the linear order and is essential for
avoiding double counting.

4.4 Summary

• The many-body problem is reformulated as a variational problem in terms of G and Σ.

• The Luttinger–Ward functional Φ[G] encapsulates all many-body interaction effects via a sum
over skeleton diagrams.

• The self–energy is given by

Σ =
δΦ[G]

δG
,

which ensures that the Dyson equation is recovered.

• The grand potential is expressed as

Ω = Φ[G]− Tr(ΣG)− Tr ln
(
1−G0Σ

)
+Ω0.

The Tr ln term arises naturally from the determinant of the interacting inverse propagator
and sums an infinite series of interaction corrections.

• This formulation provides a solid foundation for systematic approximations (e.g., GW, DMFT)
and a unified framework that links density-based and Green’s function-based approaches.

5 From Bare to Dressed Quantities: Incorporating W

In Section 8.3 the formalism is extended to account for screening effects by introducing the screened
interaction W as a variable. In the original Luttinger–Ward (LW) formulation the grand potential
is expressed as a functional of the one–particle Green’s function G (and, implicitly, the self–energy
Σ) using the bare Coulomb interaction vc. However, the bare interaction is strongly renormalized
by the electronic response. To capture this, we extend the functional formalism so that the physical,
dressed quantities appear.
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1. Dressed Quantities versus Bare Quantities

In the original formulation, the Dyson equation for the one–particle Green’s function is written as

G−1 = G−1
0 − Σ,

where G0 is the non-interacting Green’s function and Σ is the self–energy. Here, the Coulomb
interaction enters via perturbative diagrams constructed with the bare interaction vc. In this
context, screening is implicit and appears only after summing many diagrams.

In contrast, the dressed formulation replaces the bare Coulomb interaction vc with the screened
interaction W . The screening is captured by the irreducible polarizability P through the Dyson
equation for the interaction:

W = vc + vc P W,

which can be rearranged as

W =
vc

1− vc P
.

Here, P quantifies the collective response of the electrons to external perturbations. Thus, while
the self–energy Σ accounts for how individual electrons are renormalized by interactions, the polar-
izability P (and hence W ) describes how the Coulomb interaction itself is modified (or “dressed”)
by screening.

2. Extending the Luttinger–Ward Functional: Incorporating W

In the original LW functional, the grand potential is given as a functional of G (or Σ) only:

ΩLW[G] = Φ[G]− Tr(ΣG)− Tr ln
(
1−G0Σ

)
+Ω0,

with the self–energy obtained via

Σ =
δΦ[G]

δG
.

This formulation uses the bare Coulomb interaction implicitly (through G0 and the diagrammatic
expansion for Φ[G]).

However, one can extend the formalism to include the screened interactionW as an independent
variable. In this extended approach, the grand potential becomes a functional Ψ[G,W ] that depends
on both the dressed Green’s function and the screened interaction. Although the full extended
functional is more complex, its central idea is that:

Ψ[G,W ] = Φ
[
G, ṽ[G,W ]

]
− 1

2
Tr′

[
P W − ln

(
1 + P W

)]
,

where:

• ṽ[G,W ] is an effective bare interaction related to W (often via ṽ =W/(1 + P W )),

• P is the irreducible polarizability, and

• The prime on the trace indicates that certain degrees of freedom (such as spin) are treated
separately.

This extended functional explicitly incorporates screening. It allows one to compute the self–energy
Σ using the dressedW (for example, in the GW approximation, Σ ≈ iGW ), which provides a more
physically realistic description of interactions.
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3. Self–Energy vs. Polarizability

It is essential to understand the distinct roles of the self–energy and the polarizability:

• Self–Energy Σ: A one–particle quantity that corrects the propagation of an electron. It
enters the Dyson equation for G and modifies quasiparticle energies and lifetimes.

• Polarizability P : A two–particle quantity that measures the system’s response to external
perturbations (i.e., how the electron density rearranges). P is central to determining the
screening of the Coulomb interaction, and it enters the Dyson equation for W .

Thus, while Σ reflects how a single electron is ”dressed” by interactions, P (and consequently W )
captures the collective response of the electron gas.

6 From Bare to Dressed Building Blocks in MBPT

6.1 Introduction and Motivation

In many-body perturbation theory, initial expansions typically use bare building blocks: the non-
interacting Green’s function G0 and the bare Coulomb interaction vc. Such expansions often exhibit
poor convergence due to strong interactions. Thus, transitioning to dressed quantities significantly
improves both convergence and physical clarity.

6.2 From Bare to Dressed Green’s Functions

The dressed Green’s function G includes all single-particle interaction effects and is defined via the
Dyson equation:

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2),

where Σ is the self-energy, representing interaction-induced modifications to single-particle propaga-
tion. Diagrammatically, this involves summing infinite classes of self-energy insertions, simplifying
perturbation expansions.

6.3 From Bare to Screened Coulomb Interaction

Realistic systems exhibit strong screening effects. The screened Coulomb interaction W incorpo-
rates this screening explicitly, defined by:

W = vc + vcPW,

with P being the irreducible polarizability, representing the collective electronic response. Solving
explicitly:

W =
vc

1− vcP
,

clarifies how collective electron density rearrangements reduce the effective electron-electron inter-
action strength.
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6.4 Dressed Quantities and Diagrammatic Reorganization

Employing dressed quantities G and W reorganizes perturbation expansions into simpler and fewer
diagrams:

• Skeleton diagrams: Diagrams composed entirely of dressed quantities, free of explicit self-
energy or polarizability insertions.

• Improved convergence and clearer physical interpretations result from this reorganization.

6.5 Connection to Extended Luttinger–Ward Functional

The shift to dressed quantities naturally leads to an extended LW-type functional, explicitly in-
volving dressed quantities:

Ψ[G,W ] = Φ[G, ṽ[G,W ]]− 1

2
Tr′ [PW − ln(1 + PW )] ,

where the effective interaction is defined as:

ṽ[G,W ] =
W

1 + PW
.

The stationary condition of this functional recovers Dyson equations for both G and W .

6.6 Advantages of the Dressed Formulation

Moving to dressed quantities offers multiple benefits:

• Better-controlled approximations: Inherently include substantial many-body correc-
tions, simplifying higher-order terms.

• Physical transparency: Explicit distinction between single-particle and collective phenom-
ena.

• Unified framework: Bridges various many-body methods, including GW and DMFT.

7 Generating Functionals, Effective Action, and Conserving Ap-
proximations

In many-body theory, generating functionals offer a systematic way to compute expectation val-
ues and correlation functions by coupling external source fields to the operators of interest. By
performing a Legendre transform of the generating functional, one obtains the effective action
Γ. The stationarity condition of Γ not only yields the physical observables but also recovers the
Dyson equation, which underlies the Ward identities that enforce conservation laws such as particle
number conservation.
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7.1 Basic Concept and Definition

For a given operator Ô, the generating functional is defined as

Ω(u) = − 1

β
lnTr

{
e−β(Ĥ−µN̂)e−uÔ

}
. (9)

Differentiating with respect to u and then setting u = 0 yields the expectation value:

β
∂Ω(u)

∂u

∣∣∣∣
u=0

= ⟨Ô⟩. (10)

For operators that depend on space, time, and spin, we generalize this concept by introducing
a source function J(1, 1′) coupled to an operator Q̂(1, 1′):

Ω[J ] = − 1

β
lnTr

{
e−β(Ĥ−µN̂) TC exp

[
−
∫
d1 d1′ J(1, 1′) Q̂(1, 1′)

]}
, (11)

where TC denotes time (or contour) ordering. Then, the expectation value of Q̂(1, 1′) is given by

Q(1, 1′) =
δΩ[J ]

δJ(1, 1′)

∣∣∣∣
J=0

. (12)

For instance, choosing
Q̂(1, 1′) = i ψ̂†(1)ψ̂(1′),

one obtains the one-particle Green’s function:

G(1, 1′) = β
δΩ[J ]

δJ(1′, 1)

∣∣∣∣
J=0

. (13)

7.2 Effective Action via Legendre Transform and Auxiliary Systems

The effective action Γ[Q] is defined as the Legendre transform of Ω[J ]:

Γ[Q] ≡ βΩ[JQ]−
∫
d1 d1′ JQ(1, 1

′)Q(1, 1′), (14)

with the source determined by

JQ(1, 1
′) = − δΓ[Q]

δQ(1, 1′)
. (15)

At the physical solution (when JQ = 0), the effective action is stationary:

δΓ[Q]

δQ(1, 1′)

∣∣∣∣∣
Q=Q0

= 0, (16)

so that Q equals its physical expectation value Q0 and Γ[Q0] equals the physical grand potential.
It is often useful to split the effective action into a solvable part and corrections:

Γ[Q] = Γs[Q] + ∆Γ[Q], (17)

and to introduce a coupling constant λ to interpolate between the non-interacting (λ = 0) and fully
interacting (λ = 1) systems:

Γ[Q] = Γs[Q] +

∫ 1

0
dλ

dΓλ[Q]

dλ
. (18)
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7.3 Stationarity, the Dyson Equation, and Conserving Approximations

A central result is that the effective action, when expressed as a functional of the one-particle
Green’s function G, leads to the Dyson equation upon stationarity. A typical form for the effective
action is:

Γ[G] = Φ[G]− Tr(ΣG)− Tr ln
(
1−G0Σ

)
+Ω0, (19)

where:

• Φ[G] is the Luttinger–Ward functional (expressed as a sum over skeleton diagrams built from
G),

• Σ is the self-energy, defined as

Σ(1, 2) =
δΦ[G]

δG(2, 1)
,

• G0 is the non-interacting Green’s function, and

• Ω0 is the non-interacting grand potential.

Taking the functional derivative of Γ[G] with respect to G yields

δΓ[G]

δG(1, 2)
=

δΦ[G]

δG(1, 2)
− Σ(1, 2)− δ

δG(1, 2)
Tr ln

(
1−G0Σ

)
.

Since by definition Σ(1, 2) = δΦ[G]/δG(2, 1), the first two terms cancel. A careful evaluation of the
remaining derivative (using the chain rule and properties of the logarithm) then leads directly to
the Dyson equation:

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2). (20)

Thus, the stationarity condition δΓ[G]/δG = 0 is equivalent to the Dyson equation.

7.4 Connection to Conservation Laws and Ward Identities

The Dyson equation is not only the equation of motion for G but also a reflection of the underlying
symmetries of the system. When the self-energy is derived from a generating functional, i.e.,

Σ =
δΦ[G]

δG
,

the resulting theory satisfies the Ward identities.
Ward Identities: Ward identities are exact relations between Green’s functions and vertex

functions that arise due to continuous symmetries (such as gauge invariance or global phase in-
variance). In the context of an electron system, they relate the one-particle Green’s function, the
self-energy, and the current vertex. These identities ensure that conservation laws, such as the
conservation of charge (and thus particle number), are maintained. For example, the conservation
of particle number implies the continuity equation

∂n(x, t)

∂t
+∇ · j(x, t) = 0,

where n(x, t) is the electron density and j(x, t) is the current density. The Ward identities enforce
that variations in G and Σ due to external perturbations do not violate this continuity equation.

Thus, if the effective action is constructed such that its stationary condition recovers the Dyson
equation, then the associated Ward identities are automatically satisfied. This guarantees that
important conservation laws (particle number, momentum, energy) hold as the system evolves.
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7.5 Summary

In summary:

1. Generating Functional: By introducing a source J coupled to an operator Q̂, the gener-
ating functional

Ω[J ] = − 1

β
lnTr

{
e−β(Ĥ−µN̂)TC exp

[
−
∫
d1 d1′ J(1, 1′) Q̂(1, 1′)

]}
,

generates expectation values via differentiation.

2. Effective Action: The Legendre transform yields the effective action

Γ[Q] ≡ βΩ[JQ]−
∫
d1 d1′ JQ(1, 1

′)Q(1, 1′),

with the source JQ given by −δΓ[Q]/δQ. At the stationary point, Q equals its physical value.

3. Dyson Equation: When Q is chosen as the one-particle Green’s function G, the stationarity
condition δΓ[G]/δG = 0 recovers the Dyson equation:

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2),

with the self-energy defined as Σ(1, 2) = δΦ[G]/δG(2, 1).

4. Ward Identities and Conservation Laws: The fact that Σ is derived from Φ[G] ensures
that the Ward identities—exact relations stemming from continuous symmetries—are sat-
isfied. These identities guarantee that conservation laws (e.g., the continuity equation for
particle number) are upheld.

This variational framework not only provides a powerful method for computing physical ob-
servables but also ensures that approximations built upon it are conserving, preserving essential
symmetries of the system.
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