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Introduction: Functional Formulation

Key Idea

Instead of working with the full many–body wavefunction, we describe physical
quantities as functionals of a key observable.

▶ Examples:
▶ Electron density n(r) in DFT.
▶ One–particle Green’s function G and self–energy Σ.
▶ Screened Coulomb interaction W and related functionals.

▶ Provides a variational basis that automatically incorporates conservation laws.

▶ Underpins practical methods like the GW approximation, DMFT, and conserving
approximations.



Comparison of Different Calculation Methods



Variational Principle and Density Functionals

Variational Principle

E [Ψ] = ⟨Ψ|Ĥ|Ψ⟩ with
δE [Ψ]

δΨ
= 0.

In DFT the energy is recast as a functional of the electron density:

E [n] with
δE [n]

δn(r)
= 0,

so that the ground-state energy is E0 = E [n0] for the true density n0(r).



The Kohn–Sham Auxiliary System and Green’s Function Formulation

▶ Kohn and Sham introduced an auxiliary system of non-interacting particles that
reproduces the interacting density.

▶ In the Green’s function formulation, the Kohn–Sham Green’s function GKS obeys:

GKS = G0 + G0 vHxc GKS,

or equivalently,
G−1
KS = G−1

0 − vHxc,

where:
▶ G0 is the Green’s function of a non-interacting reference system.
▶ vHxc(r) = vH(r) + vxc(r) combines the Hartree and exchange–correlation potentials.

▶ The electron density is recovered from GKS via:

n(x) = −i GKS(x , t; x , t
+).



The Mermin Functional and the Grand Potential
▶ At finite temperature, the grand potential is defined by:

Ω = E − TS − µN.

▶ In the Kohn–Sham framework, the Mermin functional for the grand potential is
written as:

ΩKS
M = Ωxc [n] + EH [n]−

∫
dr vHxc(r)n(r) + Ωip[veff],

with the effective potential:

veff(r) = vext(r) + vH(r) + vxc(r).

▶ Here:
▶ EH [n] is the Hartree energy,

EH [n] =
1

2

∫
dr

∫
dr′

n(r) n(r′)

|r − r′|
.

▶ Ωxc [n] incorporates exchange–correlation effects.



Connecting Density and Green’s Function Formulations
▶ The coupling term between the effective potential and density is rewritten as a

trace: ∫
dr vHxc(r)n(r) = Tr(vHxc GKS).

▶ Using the Dyson equation:

G−1
KS = G−1

0 − vHxc,

one derives the full expression for the grand potential:

ΩKS
M = Ωxc [n] + EH [n]− Tr(vHxc GKS)− Tr ln

(
1− G0 vHxc

)
+Ω0.

▶ The term
Tr ln

(
1− G0 vHxc

)
represents the sum over all repeated interactions:

Tr ln
(
1− G0 vHxc

)
= −

∞∑
n=1

1

n
Tr
[
(G0 vHxc)

n
]
.



Functionals of G and Σ

▶ Variational formulation of the grand potential using G and Σ

▶ The Luttinger–Ward functional Φ[G ]

▶ Expression for the grand potential Ω

▶ Physical interpretation and variational principle



The Luttinger–Ward Functional

▶ Φ[G ] is defined as the sum over all skeleton diagrams constructed with the full
interacting Green’s function G .

▶ It is a universal functional; it does not depend on the external potential.

▶ It contains all the many-body interaction effects in the system.

A crucial relation:

Σ =
δΦ[G ]

δG
.



Expression for the Grand Potential
The grand potential is expressed as:

Ω = Φ[G ]− Tr(ΣG )− Tr ln
(
1− G0Σ

)
+Ω0,

where:

▶ G0 is the non-interacting Green’s function.

▶ Ω0 is the grand potential of the non-interacting system.

▶ Tr(ΣG ) represents the linear (first-order) contribution from the interaction.

▶ Tr ln
(
1− G0Σ

)
arises from rewriting the Dyson equation:

G−1 = G−1
0 − Σ,

so that
−G−1 = −G−1

0

[
1− G0Σ

]
.

Taking the logarithm and using ln(AB) = lnA+ lnB leads to the trace-log term.



Physical Interpretation and Variational Principle
▶ Unified Description: Ω is expressed entirely in terms of G and Σ, bridging

density-functional methods and many-body perturbation theory.

▶ Variational Character: The physical Green’s function G is determined by the
stationarity condition:

δΩ

δG
= 0.

▶ The relation

Σ =
δΦ[G ]

δG

ensures that the Dyson equation

G−1 = G−1
0 − Σ

is satisfied at the stationary point.

▶ Logarithmic Term: Tr ln
(
1− G0Σ

)
sums over all higher-order corrections due

to repeated interactions, avoiding double counting.



Summary So Far
▶ We have reformulated the many-body problem as a variational problem in terms

of G and Σ.

▶ The Luttinger–Ward functional Φ[G ] is the sum over all skeleton diagrams and is
universal.

▶ The self-energy is given by:

Σ =
δΦ[G ]

δG
.

▶ The grand potential is expressed as:

Ω = Φ[G ]− Tr(ΣG )− Tr ln
(
1− G0Σ

)
+Ω0.

▶ At the stationary point, the variational condition recovers the Dyson equation:

G−1 = G−1
0 − Σ.

▶ This unified framework lays the groundwork for systematic approximations like
GW and DMFT.



Dressed Quantities versus Bare Quantities
In the original formulation we have the Dyson equation:

G−1 = G−1
0 − Σ,

where:

▶ G0 is the non-interacting Green’s function.

▶ Σ is the self–energy.

The bare Coulomb interaction vc appears in the diagrams that build up Σ. In that

picture, screening is hidden; it only shows up after you sum many diagrams.
In the dressed formulation, we replace vc with the screened interaction W . Screening
is taken into account explicitly via the irreducible polarizability P through:

W = vc + vc P W ,

which can be rearranged to:

W =
vc

1− vc P
.



Extending the Functional: Incorporating W
In the original LW formulation, the grand potential is expressed as:

ΩLW[G ] = Φ[G ]− Tr(ΣG )− Tr ln
(
1− G0Σ

)
+Ω0,

with the self–energy given by:

Σ =
δΦ[G ]

δG
.

This expression uses the bare interaction implicitly.
To account for screening explicitly, we extend the functional so that the grand
potential becomes a functional of both G and W :

Ψ[G ,W ] = Φ
[
G , ṽ [G ,W ]

]
− 1

2
Tr′

[
P W − ln

(
1 + P W

)]
.

Here:
▶ ṽ [G ,W ] is an effective bare interaction related to W (often ṽ = W

1+P W ).
▶ P is the irreducible polarizability.
▶ The prime on the trace indicates that some degrees of freedom (like spin) are

treated separately.



Self–Energy vs. Polarizability

It is important to distinguish two key quantities:

▶ Self–Energy Σ: A one–particle quantity that corrects the propagation of an
electron. It enters the Dyson equation for G and affects quasiparticle energies and
lifetimes.

▶ Polarizability P: A two–particle quantity that measures the system’s response to
external perturbations—essentially, it tells you how the electron density
rearranges. P is central to determining the screening of the Coulomb interaction
via the Dyson equation for W .

Thus, while Σ represents how an individual electron gets “dressed” by interactions, P
(and consequently W ) captures the collective response of the electrons.



Summary

▶ We start with the bare formulation where the Dyson equation is:

G−1 = G−1
0 − Σ.

▶ In the bare picture, screening only appears after summing many diagrams.

▶ The dressed formulation replaces vc with the screened interaction W , defined by:

W =
vc

1− vc P
.

▶ We extend the functional formalism so that the grand potential becomes a
functional Ψ[G ,W ], where the effective interaction is expressed in terms of W
and the polarizability P.

▶ The self–energy Σ describes the dressing of single electrons, while P (and thus
W ) captures the collective screening effect.



Transition: Linking Screening to Many-Body Perturbation Theory

▶ So far we introduced dressed quantities by replacing the bare Coulomb interaction
vc with the screened interaction W .

▶ Next, we connect this idea with many-body perturbation theory (MBPT), where
the Green’s function is expanded in powers of the interaction via adiabatic
switching.

▶ After writing the Dyson series, the formalism naturally leads back to an expression
for the grand potential in a form similar to the Luttinger–Ward (LW) functional.



From Bare to Dressed Building Blocks in MBPT

▶ MBPT initially expands using bare quantities: the non-interacting Green’s
function G0 and the bare Coulomb interaction vc .

▶ Such bare expansions can converge poorly because the Coulomb interaction is
very strong.

▶ Transitioning to dressed quantities improves convergence and provides a clearer
physical picture.



From Bare to Dressed Green’s Functions

▶ The dressed Green’s function G includes all single-particle interaction effects.

▶ It is defined via the Dyson equation:

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2),

where Σ is the self–energy.

▶ Diagrammatically, this amounts to summing over an infinite series of self–energy
insertions.



From Bare to Screened Coulomb Interaction

▶ The bare Coulomb interaction vc is modified by the electronic response.

▶ The screened Coulomb interaction W is defined by:

W = vc + vc P W ,

or equivalently,

W =
vc

1− vc P
,

where P is the irreducible polarizability.



Dressed Quantities and Diagrammatic Reorganization

▶ Using dressed quantities G and W reorganizes the perturbation series.

▶ We form skeleton diagrams: diagrams built entirely from dressed quantities
without redundant self-energy or polarizability insertions.

▶ This reorganization leads to simpler diagrams, improved convergence, and better
physical insight.



Connection to Extended Luttinger–Ward Functional

▶ With dressed quantities, the grand potential becomes a functional Ψ[G ,W ] of
both G and W .

▶ It takes the form:

Ψ[G ,W ] = Φ
[
G , ṽ [G ,W ]

]
− 1

2
Tr′

[
P W − ln

(
1 + P W

)]
,

where the effective interaction is given by:

ṽ [G ,W ] =
W

1 + P W
.

▶ The stationary condition of Ψ[G ,W ] recovers the Dyson equations for both G
and W .



Advantages of the Dressed Formulation

▶ Better-controlled approximations: Dressed quantities already include
many-body corrections.

▶ Physical transparency: Clear separation of single-particle effects (Σ) and
collective responses (P and W ).

▶ Unified framework: Provides a common language that connects approaches such
as GW and DMFT.



Generating Functionals, Effective Action, and Conserving Approximations:
Outline

▶ Basic Concept and Definition of Generating Functionals

▶ Effective Action via Legendre Transform and Auxiliary Systems

▶ Stationarity of the Effective Action and Recovery of the Dyson Equation

▶ Connection to Ward Identities and Conservation Laws

▶ Summary



Basic Concept and Definition

Generating functionals provide a way to compute expectation values by coupling an
external source to an operator.

For an operator Ô, the generating functional is defined as

Ω(u) = − 1

β
ln Tr

{
e−β(Ĥ−µN̂)e−uÔ

}
. (1)

Differentiating with respect to u at u = 0 gives:

β
∂Ω(u)

∂u

∣∣∣∣
u=0

= ⟨Ô⟩. (2)



Time-Ordered Generating Functional

For operators depending on space, time, and spin, we introduce a source function
J(1, 1′) coupled to an operator Q̂(1, 1′):

Ω[J] = − 1

β
ln Tr

{
e−β(Ĥ−µN̂) TC exp

[
−
∫

d1 d1′ J(1, 1′) Q̂(1, 1′)
]}

, (3)

where TC denotes time (or contour) ordering.

The expectation value is then obtained by

Q(1, 1′) =
δΩ[J]

δJ(1, 1′)

∣∣∣∣
J=0

. (4)



Effective Action via Legendre Transform

The effective action Γ[Q] is defined as the Legendre transform of Ω[J]:

Γ[Q] ≡ β Ω[JQ ]−
∫

d1 d1′ JQ(1, 1
′)Q(1, 1′). (5)

The source is given by

JQ(1, 1
′) = − δΓ[Q]

δQ(1, 1′)
. (6)

At the stationary point (when JQ = 0), we have

δΓ[Q]

δQ(1, 1′)

∣∣∣∣∣
Q=Q0

= 0, (7)

meaning Q equals its physical value Q0 and Γ[Q0] equals the grand potential.



Stationarity and the Dyson Equation
A common form for the effective action in terms of the one-particle Green’s function G
is:

Γ[G ] = Φ[G ]− Tr(ΣG )− Tr ln
(
1− G0Σ

)
+Ω0, (8)

where:
▶ Φ[G ] is the Luttinger–Ward functional.

▶ Σ(1, 2) =
δΦ[G ]

δG (2, 1)
is the self-energy.

▶ G0 is the non-interacting Green’s function.
▶ Ω0 is the non-interacting grand potential.

Taking the functional derivative,

δΓ[G ]

δG (1, 2)
=

δΦ[G ]

δG (1, 2)
− Σ(1, 2)− δ

δG (1, 2)
Tr ln

(
1− G0Σ

)
,

and noting that Σ(1, 2) = δΦ[G ]/δG (2, 1), the first two terms cancel. A careful
evaluation of the remaining term yields the Dyson equation:

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2). (9)



Connection to Ward Identities and Conservation Laws

The Dyson equation is not only the equation of motion but also underpins conservation laws via the
Ward identities.
Ward Identities:

▶ They are exact relations among Green’s functions and vertex functions.

▶ They follow from continuous symmetries (e.g., gauge invariance or global phase invariance).

▶ For example, in an electron system, a Ward identity relates the one-particle Green’s function, the
self-energy, and the current–vertex function.

Conservation Laws:

▶ Particle number conservation: The particle number

N = −i Tr G(t, t+)

remains constant, ensuring the continuity equation:

∂n(x , t)

∂t
+∇ · j(x , t) = 0.

▶ When Σ is derived as Σ = δΦ[G ]/δG , the Ward identities hold, guaranteeing that any variation
in G due to external perturbations will not violate these conservation laws.



Summary
1. Generating functionals allow us to compute expectation values by coupling

external sources to operators.

2. The effective action Γ[Q] is obtained by a Legendre transform of the generating
functional, with

Γ[Q] = β Ω[JQ ]−
∫

d1 d1′ JQ(1, 1
′)Q(1, 1′),

and JQ(1, 1
′) = −δΓ[Q]/δQ(1, 1′).

3. The stationary condition δΓ[G ]/δG = 0 recovers the Dyson equation,

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2),

where Σ = δΦ[G ]/δG .

4. The Dyson equation is the basis for the Ward identities, which enforce
conservation laws (e.g., particle number conservation) by ensuring that variations
in G are consistent with the underlying symmetries.


