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Introduction and Motivation (1)

▶ In many-body theory, the one-body Green’s function G is a cornerstone.

▶ Naively, the equation of motion for G references higher-order G2,G3, . . . (the
Martin–Schwinger hierarchy).

▶ Goal: find a closed equation for G by employing functional derivatives.

▶ This sets up the RPA (random phase approximation) and GW expansions in
extended systems.



Introduction and Motivation (2)

▶ The functional-derivative trick: add a fictitious external potential u(3), then
remove it (u → 0).

▶ It’s analogous to source fields in quantum field theory or linear-response
expansions in condensed matter.



Definitions and Background (1)

Time-ordered one-body Green’s function:

G (1, 1′) = − i ⟨0|T [ψ̂(1)ψ̂†(1′)]|0⟩,

where (1) ≡ (x1, t1) and ψ̂(1) annihilates an electron at (r1, σ1, t1).
Note: For finite T , one can switch to Matsubara or contour ordering.



Definitions and Background (2)

Hamiltonian:

Ĥ =

∫
dx ψ̂†(x) h(x) ψ̂(x) +

1

2

∫∫
dx dx ′ ψ̂†(x) ψ̂†(x ′) vc(x , x

′) ψ̂(x ′) ψ̂(x).

▶ h(x) = −1
2∇

2 + vext(x): single-particle part.

▶ vc(x , x
′): instantaneous Coulomb interaction.



Equation of Motion for G

From the Heisenberg EoM, we get[
i ∂t1 − h(x1)

]
G (1, 1′) + i

∫
dx2 vc(x1, x2)G2(1, 2; 1

′, 2+) = δ(1, 1′).

Key: G2 is the two-particle Green’s function.



Two-Particle Green’s Function G2

G2(1, 2; 1
′, 2′) = (−i)2⟨0|T [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]|0⟩.

▶ Equation of motion for G2 references G3, etc.

▶ Leads to the Martin–Schwinger hierarchy.



Martin–Schwinger Hierarchy

▶ Each Gs references Gs+1 in its EoM.

▶ An infinite chain, correct but not practical.

▶ We seek a closure scheme to avoid direct G2,G3, . . .



Introducing L: The Two-Particle Correlation Function

G2(1, 2; 1
′, 2′) = − L(1, 2; 1′, 2′) + G (1, 1′)G (2, 2′).

▶ For non-interacting electrons, L = 0.

▶ For interactions, L accounts for excess correlation beyond G × G .



Substitute into G ’s EoM

Original: [
i ∂t1 − h(x1)

]
G (1, 1′) + i

∫
dx2 vc(x1, x2)G2(1, 2; 1

′, 2+) = δ(1, 1′).

Replace G2 by −L+ G G :
. . .



Rearranged Equation for G

G (1, 1′) = G0(1, 1
′) + G0(1, 2)

[
vH(2)

]
G (2, 1′) + i G0(1, 2) vc(2, 3) L

(
2, 3+; 1′, 3++

)
.

▶ G0: non-interacting Green’s function.

▶ vH : Hartree potential.

▶ L: still unknown, capturing correlation.



Summary and Motivation for Next Step

▶ The one-body EoM now depends on L.

▶ We still don’t have a closed form for G alone.

▶ Next: Use functional derivatives (δG/δu) to express L.

▶ This will close the problem at the one-body level.



Functional Derivative Approach

▶ Direct EoM for G references G2, leading to an infinite hierarchy (G3,G4, . . .).

▶ Functional-derivative trick: turn G2 into δG/δu, avoiding separate G2

equations.



Adding an External Potential u

Ĥ → Ĥ +

∫
d3 u(3) n̂(3).

▶ u(3) couples to electron density n̂(3).

▶ Denote the new 1-body Green’s function by Gu.

▶ Eventually, u → 0, i.e. purely formal.



Relating G2 to δG/δu

δGu(2, 1
′)

δu(3)
= Lu(2, 3; 1

′, 3+).

▶ Lu is the two-particle correlation function with the potential u.

▶ In the limit u → 0, we recover the physical L.



Replacing G2 7→ δG
δu

Gu(1, 1
′) = G0(1, 1

′) + G0(1, 2)
[
u(2) + vH(2)

]
Gu(2, 1

′) + i G0(1, 2) vc(2, 3)
δGu(2, 1

′)

δu(3+)
.

▶ Single integral-differential eq. in Gu.



One Equation for G

▶ All references to G2 are gone, replaced by δG/δu.

▶ At the end, set u = 0 to recover the physical system.

▶ This is still nonlinear, but only one function G is unknown.



Physical Meaning of u → 0

▶ u is a formal probe, not an actual external field.

▶ Similar to source fields in QFT or small potentials in Kubo response.

▶ The derivative δG/δu at u = 0 encodes correlation that would appear in G2.



Advantages & Implications

▶ Avoid explicit G2 (or G3,G4, . . .).

▶ Systematic approach to correlation.

▶ Next: we rewrite in a Dyson-like form, incorporate self-energy approximations
(RPA, GW).



Summary (Functional Derivative Approach)

▶ We introduced a small u(3), letting L appear as δG/δu.

▶ The final eq. is an integral–differential eq. for G alone.

▶ Next Steps: Move to self-energy Σ and Dyson eq.



Dyson Equations: Motivation

Context: We introduced how the one-body Green’s function G depends on the
two-particle correlation function L, but the resulting expansions can be complicated.

▶ Goal: Reorganize expansions via Dyson equations to handle infinite series of
diagrams more cleanly.

▶ (i) Understand how interactions shift quasi-particle energies.

▶ (ii) Define an additive self-energy Σ that captures exchange–correlation effects.

▶ (iii) Summation of Dyson-like expansions to include infinite orders systematically.

Outcome:

▶ The self-energy Σ modifies non-interacting G0 to produce the dressed G .

▶ Higher-order correlations become manageable in a single integral equation.



Key Results (Summary)

▶ Iterating the equation of motion directly (e.g., Hartree expansions) can cause
undesired extra poles instead of a shifted main peak.

▶ Recasting into inverse form reveals an additive self-energy, Σ.

▶ The Dyson equation
G−1 = G−1

0 − Σ

shows how interactions (beyond Hartree) enter as dynamic and non-local
corrections.

▶ Bethe–Salpeter approach: an analogous construction for the two-particle Green’s
function L, yielding a kernel related to Σ.

▶ Solving Dyson-like equations =⇒ infinite diagrammatic resummation. Essential
for self-consistent many-body methods.



Equation of Motion and Functional Derivatives

Original functional-differential equation (Schwinger–Dyson form):

Gu(1, 1
′) = G0(1, 1

′) + G0

[
u + vH

]
Gu + i G0 vc

δGu

δu
.

▶ u = small fictitious potential; Gu = Green’s function in that potential.

▶ Directly iterating can produce unphysical multi-pole expansions.

▶ We want a more stable reorganized approach.



Inverse-Operator Strategy

Define G−1
u : so that ∫

d1′′ G−1
u (1, 1′′)Gu(1

′′, 1′) = δ(1, 1′).

Key step: combine G−1
0 with the chain rule in the equation of motion to isolate

“interaction dressing” as a single operator, Σ:

G−1
u (1, 1′) = G−1

0 (1, 1′)− Σ(1, 1′).

This is the inverse form of the Schwinger–Dyson equation.

▶ Σ lumps all exchange–correlation effects beyond G0.

▶ When u → 0, Σ ≡ ΣH +Σxc for the physical system.



Dyson Equation: Final Integral Form

Invert G−1
u = G−1

0 − Σ to get the Dyson equation:

Gu(1, 1
′) = G0(1, 1

′) +

∫
d2 d3 G0(1, 2)Σ(2, 3)Gu(3, 1

′).

▶ Summation over all many-body corrections encoded in Σ.

▶ At u = 0, recovers the physical G .

▶ Poles in G (k, ω) now shift via ReΣ(k, ω).

Advantage: avoids spurious poles from naive expansions, capturing instead a single
shifted quasi-particle peak and possible satellites.



Pole Structure and Physical Meaning

G (k, ω) =
1

ω − ϵk − Σ(k, ω)
. ▶ Shifts ϵk by ReΣ.

▶ Quasi-particle lifetimes from ImΣ.

▶ Summation of infinite classes of
diagrams once Σ is suitably
approximated.

Physical content:

▶ ΣH : local Hartree potential from electron density.

▶ Σxc: dynamic exchange–correlation capturing interactions, screening, etc.



Wrap-Up of the Inverse-Operator Logic

1. Start: functional-differential equation in a fictitious field u.

2. Multiply by G−1
0 , gather all extra terms into Σ.

3. Dyson equation yields infinite diagrammatic resummation for G once Σ is chosen
(HF, GW, T-matrix, . . . ).

Conclusion: The Dyson approach systematically reorganizes expansions, giving a
single self-energy operator that encapsulates correlation corrections. This powerful
viewpoint underlies modern many-body perturbation theory.

Next steps:

▶ Approximate or derive expressions for Σ (e.g., GW).

▶ Possibly solve self-consistently for G (or not, in a one-shot approach).

▶ Similar logic extends to two-particle correlation with Bethe–Salpeter eq.



A starting Point For Approximations

▶ We seek a practical scheme for the self-energy Σ.

▶ Formally, Schwinger–Dyson equations or infinite diagram expansions exist, but we
must decide which diagrams / derivatives to keep.

▶ Key question: How do we systematically derive or approximate Σ?



Eqs. (10.34)–(10.37): The Self-Energy as a Functional

Goal: express Σ(1, 2) in terms of G and δG/δu.

Decomposition:
G−1 = G−1

0 −
[
u + vH +Σ

]
.

→ all arguments are space/spin/time (r1, σ1, t1), etc.

Starting expression (Eq. (10.34)):

Σ(1, 2) = vH(1, 2) − i vc(1, 4)G (1, 3)
δG−1(3, 2)

δu(4+)
.

▶ vH(1, 2) ≡ vH(1) δ(1, 2) is Hartree.

▶ Variation w.r.t. u encodes the correlation via δG−1/δu.



Splitting δG−1

δu : Local vs. Correlation Parts

G−1(3, 2) = G−1
0 (3, 2) − u(3) δ(3, 2) − vH(3, 2) − Σ(3, 2).

Hence,
δG−1(3, 2)

δu(4+)
= − δ(3, 4) δ(3, 2) − δΣ(3, 2)

δu(4+)
.

=⇒ Substituting back splits Eq. (10.34) into two terms:

Σ(1, 2) = vH(1, 2) + i vc(1
+, 4)G (1, 3)

[
δ(3, 2)δ(3, 4) + δΣ(3,2)

δu(4)

]
.

=⇒ Local piece + Chain-rule piece → Eq. (10.35).



From (10.35) to (10.36): Identifying the Exchange and Derivatives

Σx(1, 2) = i G (1, 2) vc(1
+, 2) (bare Fock term).

The remainder is

Σc(1, 2) = i vc(1
+, 4)G (1, 3)

[
. . .

]
.

We rewrite δΣ
δu as δ(vH+Σxc)

δG · δG
δu .

Σ(1, 2) = vH(1, 2) + i vc(1
+, 4)G (1, 3)

[
δ(3, 2) δ(3, 4) + δ(vH+Σxc)(3,2)

δG
δG

δu(4)

]
.

This is Eq. (10.36).



Final Form: Eq. (10.37)

Σ(1, 2) = vH(1, 2) + i G (1, 3) W (1+, 4) Λ(3, 2; 4).

One often defines W ≡ ϵ−1vc as the screened interaction, and Λ or Γ as a vertex
function:

Σxc(1, 2) = i

∫
d3 d4G (1, 3) Γ(3, 2; 4)W (1+, 4).

=⇒ The self-energy Σ is a generalized potential:

Σ = vH︸︷︷︸
classical

+ Σx = i G vc︸ ︷︷ ︸
Fock exchange

+ Σc = . . .︸ ︷︷ ︸
induced correlation

.



Σ as a Generalized Potential

▶ Hartree term: classical density → local vH .

▶ Fock (exchange): nonlocal i G vc . Cancels self-interaction, introduces
long-range exchange.

▶ Correlation: a “generalized induced potential” akin to vc χ vc but with G in
place of ρext.

=⇒ Distinction:

▶ Strongly screened system: emphasize χ in vc χ vc .

▶ Less classical regime or strong correlation: refine vertex Γ.



Common Approximations

1. Hartree–Fock (HF)
▶ Keep only the bare Fock term.
▶ No dynamical screening or satellites.
▶ Fully conserving.

2. GW Approximation
▶ Replace bare Coulomb interaction vc by dynamically screened interaction W .
▶ Neglect vertex corrections (set Γ = 1).
▶ Recovers plasmon excitations and accurate bandgaps.

3. T -Matrix Approaches
▶ Summation of ladder diagrams (repeated scattering).
▶ Important in low-density or strongly correlated systems.



Screened Interaction and Polarizability

▶ Correlation self-energy Σxc simplifies to:

Σxc(1, 2) = Σx(1, 2) + vc(1
+, 3̄)G (1, 2)L(4̄, 3̄; 4̄+, 3̄+)vc(2, 4̄

+) (1)

▶ Connection to Polarizability χ:

−iL(3, 2; 3+, 2+) =
δn(3)

δu(2)
= χ(3, 2) (2)

▶ Screened Interaction W :

W (1, 2) = vc(1, 2) + vc(1, 3̄)χ(3̄, 4̄)vc(4̄, 2) (3)



The GW Approximation

▶ GW Approximation for self-energy:

Σxc(1, 2) = iG (1, 2)W (1+, 2) (4)

▶ Improvement over Hartree–Fock:
▶ Dynamical screening replaces unscreened Coulomb interaction.
▶ Captures electron rearrangements (plasmonic excitations).

▶ Conserving approximation at every level.



Polarizability Approximation: L0 vs. RPA

▶ Simplest Approximation L ≈ L0:

L0(1, 2; 1
′, 2′) = G (1, 2′)G (2, 1′) (5)

▶ Suitable for finite systems (small molecules).

▶ Insufficient for extended systems (solids).

▶ Random Phase Approximation (RPA):

L = L̃− i L̃vcL (6)

▶ Summation of infinite bubble diagrams.

▶ Robust for extended solids (GWRPA).



Comparing GWL0 and GWRPA

GWL0

▶ Single bubble diagram.

▶ Suitable for finite, localized
systems.

▶ Simpler but limited accuracy.

GWRPA

▶ Infinite bubble resummation.

▶ Essential for extended systems.

▶ Improved physical accuracy.

▶ Standard in solid-state
applications.



Functional Representation Φ[G ,W ]

▶ Compact representation with functional Φ[G ,W ]:

ΦGW [G ,W ] = −1

2
Tr(GWG ) (7)

▶ Highlights simplification through screening.

▶ Powerful diagrammatic formulation.
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