Many-Body Perturbation Theory via Functional Derivatives Leading into RPA and the GW Approximation

March 31, 2025

・ロト・(四ト・(川下・(日下・(日下)))

Introduction and Motivation (1)

- In many-body theory, the one-body Green's function G is a cornerstone.
- Naively, the equation of motion for G references higher-order G₂, G₃,... (the Martin–Schwinger hierarchy).
- ▶ Goal: find a closed equation for G by employing functional derivatives.
- This sets up the RPA (random phase approximation) and GW expansions in extended systems.

Introduction and Motivation (2)

The functional-derivative trick: add a fictitious external potential u(3), then remove it (u → 0).

It's analogous to source fields in quantum field theory or linear-response expansions in condensed matter.

Time-ordered one-body Green's function:

$$G(1,1')=-\,i\,\langle 0|\, T[\hat{\psi}(1)\hat{\psi}^{\dagger}(1')]|0
angle,$$

where $(1) \equiv (x_1, t_1)$ and $\hat{\psi}(1)$ annihilates an electron at $(\mathbf{r}_1, \sigma_1, t_1)$. **Note:** For finite T, one can switch to Matsubara or contour ordering.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definitions and Background (2)

Hamiltonian:

$$\hat{H} = \int dx \, \hat{\psi}^{\dagger}(x) \, h(x) \, \hat{\psi}(x) + rac{1}{2} \iint dx \, dx' \, \hat{\psi}^{\dagger}(x) \, \hat{\psi}^{\dagger}(x') \, v_c(x,x') \, \hat{\psi}(x') \, \hat{\psi}(x).$$

・ロト・4回ト・ミト・ミト・ミークへで

From the Heisenberg EoM, we get

$$[i \partial_{t_1} - h(x_1)] G(1,1') + i \int dx_2 v_c(x_1,x_2) G_2(1,2;1',2^+) = \delta(1,1').$$

Key: G_2 is the two-particle Green's function.

Two-Particle Green's Function G_2

$G_2(1,2;1',2') = (-i)^2 \langle 0 | T[\hat{\psi}(1)\hat{\psi}(2)\hat{\psi}^{\dagger}(2')\hat{\psi}^{\dagger}(1')] | 0 \rangle.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Equation of motion for G_2 references G_3 , etc.
- Leads to the Martin–Schwinger hierarchy.

Martin–Schwinger Hierarchy

- ▶ Each G_s references G_{s+1} in its EoM.
- An infinite chain, correct but not practical.
- We seek a closure scheme to avoid direct G_2, G_3, \ldots

Introducing L: The Two-Particle Correlation Function

$$G_2(1,2; 1',2') = -L(1,2; 1',2') + G(1,1') G(2,2').$$

- For non-interacting electrons, L = 0.
- For interactions, L accounts for excess correlation beyond $G \times G$.

Substitute into G's EoM

Original:

$$\left[i\,\partial_{t_1}-h(x_1)\right]G(1,1')+i\int dx_2\,v_c(x_1,x_2)\,G_2(1,2;1',2^+)=\delta(1,1').$$

. . .

Replace G_2 by -L + G G:

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Rearranged Equation for G

$G(1,1') = G_0(1,1') + G_0(1,2) [v_H(2)] G(2,1') + i G_0(1,2) v_c(2,3) L(2,3^+;1',3^{++}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- \blacktriangleright G₀: non-interacting Green's function.
- \triangleright v_H : Hartree potential.
- L: still unknown, capturing correlation.

Summary and Motivation for Next Step

- ► The one-body EoM now depends on *L*.
- ▶ We still don't have a closed form for *G* alone.
- **Next:** Use functional derivatives $(\delta G/\delta u)$ to express L.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

This will close the problem at the one-body level.

Functional Derivative Approach

Direct EoM for G references G₂, leading to an infinite hierarchy (G₃, G₄,...).
 Functional-derivative trick: turn G₂ into δG/δu, avoiding separate G₂ equations.

Adding an External Potential u

$$\hat{H} \rightarrow \hat{H} + \int d3 \, u(3) \, \hat{n}(3).$$

- u(3) couples to electron density $\hat{n}(3)$.
- Denote the new 1-body Green's function by G_u .
- Eventually, $u \rightarrow 0$, i.e. purely formal.

Relating G_2 to $\delta G/\delta u$

$$\frac{\delta G_u(2,1')}{\delta u(3)} = L_u(2,3;1',3^+).$$

- \blacktriangleright L_u is the two-particle correlation function with the potential u.
- ln the limit $u \rightarrow 0$, we recover the physical *L*.

Replacing
$$G_2 \mapsto \frac{\delta G}{\delta \mu}$$

$$G_{u}(1,1') = G_{0}(1,1') + G_{0}(1,2) [u(2) + v_{H}(2)] G_{u}(2,1') + i G_{0}(1,2) v_{c}(2,3) \frac{\delta G_{u}(2,1')}{\delta u(3^{+})}.$$

Single integral-differential eq. in G_u .

One Equation for G

- ▶ All references to G_2 are gone, replaced by $\delta G / \delta u$.
- At the end, set u = 0 to recover the physical system.
- ▶ This is still nonlinear, but *only one* function *G* is unknown.

Physical Meaning of $u \rightarrow 0$

- u is a formal probe, not an actual external field.
- Similar to source fields in QFT or small potentials in Kubo response.
- ▶ The derivative $\delta G / \delta u$ at u = 0 encodes correlation that would appear in G_2 .

Advantages & Implications

- Avoid explicit G_2 (or G_3, G_4, \ldots).
- Systematic approach to correlation.
- Next: we rewrite in a Dyson-like form, incorporate self-energy approximations (RPA, GW).

Summary (Functional Derivative Approach)

- We introduced a small u(3), letting L appear as $\delta G/\delta u$.
- ▶ The final eq. is an integral-differential eq. for G alone.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Next Steps: Move to self-energy Σ and Dyson eq.

Dyson Equations: Motivation

Context: We introduced how the one-body Green's function G depends on the two-particle correlation function L, but the resulting expansions can be complicated.

- Goal: Reorganize expansions via Dyson equations to handle infinite series of diagrams more cleanly.
- ▶ (i) Understand how interactions shift quasi-particle energies.
- \blacktriangleright (ii) Define an additive self-energy Σ that captures exchange–correlation effects.
- (iii) Summation of Dyson-like expansions to include infinite orders systematically. **Outcome:**
 - The self-energy Σ modifies non-interacting G_0 to produce the *dressed* G.
 - ▶ Higher-order correlations become manageable in a single integral equation.

Key Results (Summary)

- Iterating the equation of motion directly (*e.g.*, Hartree expansions) can cause undesired extra poles instead of a shifted main peak.
- Recasting into *inverse* form reveals an additive self-energy, Σ .

1

The Dyson equation

$$G^{-1} = G_0^{-1} - \Sigma$$

shows how interactions (beyond Hartree) enter as dynamic and non-local corrections.

- Bethe–Salpeter approach: an analogous construction for the two-particle Green's function L, yielding a kernel related to Σ.
- Solving Dyson-like equations for self-consistent many-body methods.

Equation of Motion and Functional Derivatives

Original functional-differential equation (Schwinger–Dyson form):

$$G_u(1,1') = G_0(1,1') + G_0[u+v_H]G_u + i G_0 v_c \frac{\delta G_u}{\delta u}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- u = small fictitious potential; $G_u =$ Green's function in that potential.
- Directly iterating can produce unphysical multi-pole expansions.
- ▶ We want a more stable reorganized approach.

Inverse-Operator Strategy

Define G_u^{-1} : so that

$$\int d1'' \ G_u^{-1}(1,1'') \ G_u(1'',1') = \delta(1,1').$$

Key step: combine G_0^{-1} with the chain rule in the equation of motion to isolate "interaction dressing" as a single operator, Σ :

$$G_u^{-1}(1,1') = G_0^{-1}(1,1') - \Sigma(1,1').$$

This is the inverse form of the Schwinger–Dyson equation.

- \triangleright Σ lumps all exchange–correlation effects beyond G_0 .
- When $u \to 0$, $\Sigma \equiv \Sigma_H + \Sigma_{\rm xc}$ for the physical system.

Dyson Equation: Final Integral Form

Invert $G_u^{-1} = G_0^{-1} - \Sigma$ to get the Dyson equation:

$$G_u(1,1') = G_0(1,1') + \int d2 \, d3 \, G_0(1,2) \, \Sigma(2,3) \, G_u(3,1').$$

- Summation over all many-body corrections encoded in Σ.
- ▶ At u = 0, recovers the *physical* G.
- ▶ Poles in $G(\mathbf{k}, \omega)$ now shift via $\operatorname{Re} \Sigma(\mathbf{k}, \omega)$.

Advantage: avoids spurious poles from naive expansions, capturing instead a single shifted quasi-particle peak and possible satellites.

Pole Structure and Physical Meaning

$$G(\mathbf{k},\omega) = rac{1}{\omega - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)}.$$

- Shifts $\epsilon_{\mathbf{k}}$ by Re Σ.
- Quasi-particle lifetimes from $\operatorname{Im} \Sigma$.
- Summation of infinite classes of diagrams once Σ is suitably approximated.

Physical content:

- \triangleright Σ_H : local Hartree potential from electron density.
- \triangleright $\Sigma_{\rm xc}$: dynamic exchange–correlation capturing interactions, screening, etc.

Wrap-Up of the Inverse-Operator Logic

- 1. Start: functional-differential equation in a fictitious field u.
- 2. Multiply by G_0^{-1} , gather all extra terms into Σ .
- 3. Dyson equation yields infinite diagrammatic resummation for G once Σ is chosen (HF, GW, T-matrix, ...).

Conclusion: The Dyson approach systematically reorganizes expansions, giving a single self-energy operator that encapsulates correlation corrections. This powerful viewpoint underlies modern many-body perturbation theory.

Next steps:

- Approximate or derive expressions for Σ (e.g., GW).
- ▶ Possibly solve self-consistently for G (or not, in a one-shot approach).
- Similar logic extends to two-particle correlation with Bethe–Salpeter eq.

A starting Point For Approximations

- We seek a practical scheme for the self-energy Σ.
- Formally, Schwinger–Dyson equations or infinite diagram expansions exist, but we must decide which diagrams / derivatives to keep.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Key question: How do we systematically derive or approximate Σ ?

Eqs. (10.34)–(10.37): The Self-Energy as a Functional

Goal: express $\Sigma(1, 2)$ in terms of *G* and $\delta G/\delta u$. **Decomposition**:

$$G^{-1} = G_0^{-1} - [u + v_H + \Sigma].$$

 \rightarrow all arguments are space/spin/time (r_1, σ_1, t_1), etc. **Starting expression** (Eq. (10.34)):

$$\Sigma(1,2) = v_H(1,2) - i v_c(1,4) G(1,3) \frac{\delta G^{-1}(3,2)}{\delta u(4^+)}.$$

• $v_H(1,2) \equiv v_H(1) \,\delta(1,2)$ is Hartree.

▶ Variation w.r.t. *u* encodes the *correlation* via $\delta G^{-1}/\delta u$.

Splitting $\frac{\delta G^{-1}}{\delta u}$: Local vs. Correlation Parts

$$G^{-1}(3,2) = G_0^{-1}(3,2) - u(3) \delta(3,2) - v_H(3,2) - \Sigma(3,2).$$

Hence,

$$\frac{\delta G^{-1}(3,2)}{\delta u(4^+)} = -\delta(3,4)\,\delta(3,2) - \frac{\delta \Sigma(3,2)}{\delta u(4^+)}.$$

 \implies Substituting back splits Eq. (10.34) into two terms:

$$\Sigma(1,2) = v_H(1,2) + i v_c(1^+,4) G(1,3) \Big[\delta(3,2) \delta(3,4) + \frac{\delta \Sigma(3,2)}{\delta u(4)} \Big].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → つへぐ

 \implies Local piece + Chain-rule piece \rightarrow Eq. (10.35).

From (10.35) to (10.36): Identifying the Exchange and Derivatives

$$\Sigma_x(1,2) = i G(1,2) v_c(1^+,2)$$
 (bare Fock term).

The remainder is

$$\begin{split} \Sigma_c(1,2) &= i \, v_c(1^+,4) \, G(1,3) \left[\dots \right]. \end{split}$$

We rewrite $\frac{\delta \Sigma}{\delta u}$ as $\frac{\delta(v_H + \Sigma_{xc})}{\delta G} \cdot \frac{\delta G}{\delta u}. \\ \Sigma(1,2) &= v_H(1,2) + i \, v_c(1^+,4) \, G(1,3) \Big[\delta(3,2) \, \delta(3,4) + \frac{\delta(v_H + \Sigma_{xc})(3,2)}{\delta G} \, \frac{\delta G}{\delta u(4)} \Big]. \end{split}$
This is Eq. (10.36).

Final Form: Eq. (10.37)

$$\Sigma(1,2) = v_H(1,2) + i G(1,3) W(1^+,4) \Lambda(3,2;4).$$

One often defines $W \equiv \epsilon^{-1} v_c$ as the screened interaction, and Λ or Γ as a vertex function:

$$\Sigma_{
m xc}(1,2) \;=\; i \! \int \! d3 \, d4 \, G(1,3) \, \Gamma(3,2;4) \, W(1^+,4).$$

 \implies The self-energy Σ is a *generalized potential*:

$$\Sigma = \underbrace{v_H}_{\text{classical}} + \underbrace{\sum_x = i \ G \ v_c}_{\text{Fock exchange}} + \underbrace{\sum_c = \dots}_{\text{induced correlation}}.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

$\boldsymbol{\Sigma}$ as a Generalized Potential

Hartree term: classical density \rightarrow local v_H .

- Fock (exchange): nonlocal i G v_c. Cancels self-interaction, introduces long-range exchange.
- Correlation: a "generalized induced potential" akin to v_c χ v_c but with G in place of ρ_{ext}.

 \implies Distinction:

- Strongly screened system: emphasize χ in $v_c \chi v_c$.
- **Less classical** regime or strong correlation: refine vertex Γ.

Common Approximations

1. Hartree–Fock (HF)

- Keep only the bare Fock term.
- No dynamical screening or satellites.
- Fully conserving.

2. GW Approximation

• Replace bare Coulomb interaction v_c by dynamically screened interaction W.

ション ふぼう ふぼう ふぼう しょうく

- Neglect vertex corrections (set $\Gamma = 1$).
- Recovers plasmon excitations and accurate bandgaps.

3. *T***-Matrix Approaches**

- Summation of ladder diagrams (repeated scattering).
- Important in low-density or strongly correlated systems.

Screened Interaction and Polarizability

• Correlation self-energy $\Sigma_{\rm xc}$ simplifies to:

$$\Sigma_{\rm xc}(1,2) = \Sigma_{\rm x}(1,2) + v_c(1^+,\bar{3})G(1,2)L(\bar{4},\bar{3};\bar{4}^+,\bar{3}^+)v_c(2,\bar{4}^+)$$
(1)

• Connection to Polarizability χ :

$$-iL(3,2;3^+,2^+) = \frac{\delta n(3)}{\delta u(2)} = \chi(3,2)$$
⁽²⁾

Screened Interaction W:

$$W(1,2) = v_c(1,2) + v_c(1,\bar{3})\chi(\bar{3},\bar{4})v_c(\bar{4},2)$$
(3)

The GW Approximation

GW Approximation for self-energy:

$$\Sigma_{\rm xc}(1,2) = iG(1,2)W(1^+,2)$$
 (4)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Improvement over Hartree–Fock:
 - Dynamical screening replaces unscreened Coulomb interaction.
 - Captures electron rearrangements (plasmonic excitations).
- Conserving approximation at every level.

Polarizability Approximation: L_0 vs. RPA

Simplest Approximation $L \approx L_0$:

$$L_0(1,2;1',2') = G(1,2')G(2,1')$$
(5)

- Suitable for finite systems (small molecules).
- Insufficient for extended systems (solids).
- Random Phase Approximation (RPA):

$$L = \tilde{L} - i\tilde{L}v_c L \tag{6}$$

- Summation of infinite bubble diagrams.
- Robust for extended solids (GW^{RPA}).

Comparing GW^{L_0} and GW^{RPA}

\mathbf{GW}^{L_0}

- Single bubble diagram.
- Suitable for finite, localized systems.
- Simpler but limited accuracy.

\textbf{GW}^{RPA}

- Infinite bubble resummation.
- Essential for extended systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Improved physical accuracy.
- Standard in solid-state applications.

Functional Representation $\Phi[G, W]$

• Compact representation with functional $\Phi[G, W]$:

$$\Phi_{GW}[G,W] = -\frac{1}{2} \text{Tr}(GWG)$$
(7)

- Highlights simplification through screening.
- Powerful diagrammatic formulation.