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Introduction and Motivation (1)

» In many-body theory, the one-body Green's function G is a cornerstone.

» Naively, the equation of motion for G references higher-order Gy, Gs, ... (the
Martin—Schwinger hierarchy).

» Goal: find a closed equation for G by employing functional derivatives.

» This sets up the RPA (random phase approximation) and GW expansions in
extended systems.



Introduction and Motivation (2)

» The functional-derivative trick: add a fictitious external potential u(3), then
remove it (v — 0).

> It's analogous to source fields in quantum field theory or linear-response
expansions in condensed matter.



Definitions and Background (1)

Time-ordered one-body Green’s function:

G(1,1) = =i (0| T[H (1) (1)][0),

where (1) = (x, t1) and (1) annihilates an electron at (ry, o1, t1).
Note: For finite T, one can switch to Matsubara or contour ordering.



Definitions and Background (2)

Hamiltonian:

A= [ el h 00 + 5 [ [ e 3100 510) el ) ).

> h(x) = —3V? + vext(x): single-particle part.

» v.(x,x): instantaneous Coulomb interaction.



Equation of Motion for G

From the Heisenberg EoM, we get
[i 0y — h(x1)] G(1,1) + i/dX2 ve(x1, %) Go(1,2; 1/,27) = 6(1,1).

Key: G; is the two-particle Green’s function.



Two-Particle Green's Function G,

G2(1,2;1,2') = (=)0 T[H(1)$(2)4 (29T (1)]]0).

» Equation of motion for G, references Gg, etc.

» Leads to the Martin—Schwinger hierarchy.



Martin—Schwinger Hierarchy

» Each G; references Gg11 in its EoM.

» An infinite chain, correct but not practical.

> We seek a closure scheme to avoid direct Gy, Gs, ...



Introducing L: The Two-Particle Correlation Function

Gy(1,2; 1,2y = — 1(1,2; 1",2') + G(1,1) G(2,2).

» For non-interacting electrons, L = 0.

» For interactions, L accounts for excess correlation beyond G x G.



Substitute into G's EoM

Original:
[i@tl - h(xl)} G(1,1) + i/dX2 ve(x1, %) Ga(1,2; 1/, 2%) = §(1,1').

Replace G, by —L+ G G:



Rearranged Equation for G

G(1,1) = Go(1,1") 4+ Go(1,2) [vi(2)] G(2,1") + i Go(1,2) ve(2,3) L(2,3F; 1/,37F).

» Gp: non-interacting Green's function.
» vy Hartree potential.

» [: still unknown, capturing correlation.



Summary and Motivation for Next Step

» The one-body EoM now depends on L.

» We still don't have a closed form for G alone.

» Next: Use functional derivatives (6G/du) to express L.
» This will close the problem at the one-body level.



Functional Derivative Approach

» Direct EoM for G references Gy, leading to an infinite hierarchy (Gs, G, ...).

» Functional-derivative trick: turn G into 0G/du, avoiding separate Gp
equations.



Adding an External Potential u

H — Pl+/d3 u(3) A(3).

» u(3) couples to electron density 7i(3).
» Denote the new 1-body Green's function by G,.
» Eventually, u — 0, i.e. purely formal.



Relating G, to §G/du

5G,(2,1)

= [,(2,3:1,3").
ou(3) (2, )

> L, is the two-particle correlation function with the potential v.

» In the limit u — 0, we recover the physical L.



- G
Replacing Gy — 57

5Gy(2,1)

Gu(1, 1/) = Go(1, 1/) + Go(1,2) [u(z) + VH(Q)] Gy(2, ]_’) +iGo(1,2) ve(2,3) 5u(3Y) .

» Single integral-differential eq. in G,.



One Equation for G

» All references to Gy are gone, replaced by 6G/du.
P At the end, set u = 0 to recover the physical system.

» This is still nonlinear, but only one function G is unknown.



Physical Meaning of u — 0

» 1 is a formal probe, not an actual external field.
» Similar to source fields in QFT or small potentials in Kubo response.

» The derivative 6G/du at u = 0 encodes correlation that would appear in G,.



Advantages & Implications

» Avoid explicit G (or Gs, Gy, ...).
» Systematic approach to correlation.

» Next: we rewrite in a Dyson-like form, incorporate self-energy approximations
(RPA, GW).



Summary (Functional Derivative Approach)

» We introduced a small u(3), letting L appear as §G/du.
» The final eq. is an integral—differential eq. for G alone.

> Next Steps: Move to self-energy ¥ and Dyson eq.



Dyson Equations: Motivation

Context: We introduced how the one-body Green's function G depends on the
two-particle correlation function L, but the resulting expansions can be complicated.

» Goal: Reorganize expansions via Dyson equations to handle infinite series of
diagrams more cleanly.

» (i) Understand how interactions shift quasi-particle energies.

» (i) Define an additive self-energy ¥ that captures exchange—correlation effects.

» (iii) Summation of Dyson-like expansions to include infinite orders systematically.
Outcome:

» The self-energy ¥ modifies non-interacting Gg to produce the dressed G.

» Higher-order correlations become manageable in a single integral equation.



Key Results (Summary)

> Iterating the equation of motion directly (e.g., Hartree expansions) can cause
undesired extra poles instead of a shifted main peak.

» Recasting into inverse form reveals an additive self-energy, ¥.
» The Dyson equation
Gl=¢61-%
shows how interactions (beyond Hartree) enter as dynamic and non-local
corrections.
» Bethe—Salpeter approach: an analogous construction for the two-particle Green's
function L, yielding a kernel related to X.

» Solving Dyson-like equations = infinite diagrammatic resummation. Essential
for self-consistent many-body methods.



Equation of Motion and Functional Derivatives

Original functional-differential equation (Schwinger—Dyson form):

Gu(]., 1/) = GO(]_, 1/) + Gp [u + VH] G, + i Gg v 65Gu
u

» u = small fictitious potential; G, = Green's function in that potential.
» Directly iterating can produce unphysical multi-pole expansions.

> We want a more stable reorganized approach.



Inverse-Operator Strategy

Define G, !: so that
/dl” G, 1(1,1") G,(1",1) = §(1,1").

Key step: combine GO_1 with the chain rule in the equation of motion to isolate
“interaction dressing” as a single operator, X:

G, H(1,1) = Gy (1,1 — £(1,1).

This is the inverse form of the Schwinger—Dyson equation.
> > lumps all exchange—correlation effects beyond Gp.
» When u — 0, X = Xy + X for the physical system.



Dyson Equation: Final Integral Form

Invert G;' = G;' — I to get the Dyson equation:
Gu(1,1') = Go(1, 1) +/d2 d3 Go(1,2) £(2,3) Gu(3, 1').

» Summation over all many-body corrections encoded in X.
» At u = 0, recovers the physical G.
» Poles in G(k,w) now shift via Re X(k,w).

Advantage: avoids spurious poles from naive expansions, capturing instead a single
shifted quasi-particle peak and possible satellites.



Pole Structure and Physical Meaning

1

Gk w) = w—ex— 2(k,w)’

» Shifts ex by Re L.
» Quasi-particle lifetimes from Im X_.

» Summation of infinite classes of
diagrams once ¥ is suitably
approximated.

Physical content:
> > 4 local Hartree potential from electron density.

> > ... dynamic exchange—correlation capturing interactions, screening, etc.



Wrap-Up of the Inverse-Operator Logic

1. Start: functional-differential equation in a fictitious field u.
2. Multiply by Go_l, gather all extra terms into .

3. Dyson equation yields infinite diagrammatic resummation for G once X is chosen
(HF, GW, T-matrix, ...).

Conclusion: The Dyson approach systematically reorganizes expansions, giving a
single self-energy operator that encapsulates correlation corrections. This powerful
viewpoint underlies modern many-body perturbation theory.

Next steps:
» Approximate or derive expressions for £ (e.g., GW).
» Possibly solve self-consistently for G (or not, in a one-shot approach).

» Similar logic extends to two-particle correlation with Bethe—Salpeter eq.



A starting Point For Approximations

> We seek a practical scheme for the self-energy .

» Formally, Schwinger—Dyson equations or infinite diagram expansions exist, but we
must decide which diagrams / derivatives to keep.

> Key question: How do we systematically derive or approximate ¥.?



Egs. (10.34)—(10.37): The Self-Energy as a Functional

Goal: express ¥(1,2) in terms of G and 6G/du.
Decomposition:
Gl = G&l — [u+vH+Z].
— all arguments are space/spin/time (ri, 01, t1), etc.
Starting expression (Eq. (10.34)):
8§G71(3,2)

¥(1,2) = vy(1,2) — ive(1,4)G(1,3) Su(a?)

> vy(1,2) = viy(1)4(1,2) is Hartree.

» Variation w.r.t. u encodes the correlation via §G™1/du.



Splitting % Local vs. Correlation Parts

G71(3,2) = G;1(3,2) — u(3)d(3,2) — ww(3,2) — X£(3,2).
Hence, )
6G71(3,2 6%(3,2
(su(z(w)) = —5(3,4)6(3,2) — 5u((4+)).

— Substituting back splits Eq. (10.34) into two terms:

T(1,2) = u(1,2) + i ve(17,4) 6(1,3)[3(3,2)6(3.4) + S0 ].

= Local piece + Chain-rule piece — Eq. (10.35).



From (10.35) to (10.36): Identifying the Exchange and Derivatives

Y(1,2) = iG(1,2)v(17,2) (bare Fock term).
The remainder is
Y(1,2) = ive(17,4)G(1,3) [...].

H Q 5(VH+zxc) &
We rewrite 5o AS s 5

T(1,2) = v(1,2) + i ve(17,4) G(1,3)|3(3,2) 6(3, 4) + L33 dC o],

This is Eq. (10.36).



Final Form: Eq. (10.37)

¥(1,2) = vy(1,2) + iG(1,3) W(1T,4) A(3,2;4).

One often defines W = e¢~Lv. as the screened interaction, and A or I' as a vertex
function:

Yo(1,2) = i/d3 d4 G(1,3)1(3,2;4) W(1T,4).
= The self-energy ¥ is a generalized potential:

Y= vy +Xy=iGv. + o=...
~~ S——r N——

classical Fock exchange induced correlation



> as a Generalized Potential

» Hartree term: classical density — local vp.

» Fock (exchange): nonlocal i G v.. Cancels self-interaction, introduces
long-range exchange.

» Correlation: a “generalized induced potential” akin to v, x vc but with G in
place of pext-

— Distinction:
» Strongly screened system: emphasize x in v¢ x ve.
» Less classical regime or strong correlation: refine vertex I'.



Common Approximations

1. Hartree—Fock (HF)

» Keep only the bare Fock term.
» No dynamical screening or satellites.
» Fully conserving.
2. GW Approximation
» Replace bare Coulomb interaction v. by dynamically screened interaction W.
> Neglect vertex corrections (set [ = 1).
> Recovers plasmon excitations and accurate bandgaps.
3. T-Matrix Approaches

» Summation of ladder diagrams (repeated scattering).
» Important in low-density or strongly correlated systems.



Screened Interaction and Polarizability

» Correlation self-energy . simplifies to:
To(1,2) = Tx(1,2) + ve(17,3)G(1,2)L(4,3; 47,31 )v(2,4T)

» Connection to Polarizability x:

—il(3,2;3T,27) = =x(3,2)

» Screened Interaction W':

W(1,2) = ve(1,2) + ve(1,3)x(3, 4)v(4,2)



The GW Approximation

» GW Approximation for self-energy:
Yo(1,2) = iG(1,2)W(1T,2)

» |Improvement over Hartree—Fock:

» Dynamical screening replaces unscreened Coulomb interaction.

> Captures electron rearrangements (plasmonic excitations).

» Conserving approximation at every level.



Polarizability Approximation: Ly vs. RPA

» Simplest Approximation L = Lg:
Lo(1,2;1',2") = G(1,2')G(2,1")

» Suitable for finite systems (small molecules).

v

Insufficient for extended systems (solids).

» Random Phase Approximation (RPA):

L=1[—ilv.L

v

Summation of infinite bubble diagrams.
Robust for extended solids (GWRFA).

v



Comparing GW% and GWRPA

GwRPA

GWwlo
» Infinite bubble resummation.

» Single bubble diagram. i
) . . » Essential for extended systems.
» Suitable for finite, localized

> .
systems. Improved physical accuracy.

» Standard in solid-state

» Simpler but limited accuracy. R
applications.



Functional Representation ®[G, W]

» Compact representation with functional ®[G, W]:
1
Sow|[G, W] = —§Tr(GWG)

» Highlights simplification through screening.

» Powerful diagrammatic formulation.
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