
Proof that the Electron Density for a Set of Indistin-

guishable Independent Particles is Given by

n(r) =
X

occ i

�� i(r)
��2 .

Step 1. The Many-Body Wavefunction as a Slater Determinant

For a system of N indistinguishable independent particles, the many-body wavefunction can

be written as a Slater determinant:

 (r1, r2, . . . , rN) =
1p
N !

�����������

 1(r1)  1(r2) · · ·  1(rN)

 2(r1)  2(r2) · · ·  2(rN)

...
...

. . .
...

 N(r1)  N(r2) · · ·  N(rN)

�����������

.

Here, the functions  i(r) are the orthonormal single-particle orbitals occupied in the system.

Step 2. Definition of the One-Particle Density

The electron density n(r) is defined as the probability density of finding any one electron at

position r. In a system with N particles, it is given by:

n(r) = N

Z
| (r, r2, . . . , rN)|2 dr2 · · · drN .

Step 3. Expressing the Density in Terms of the One-Particle Den-

sity Matrix

For a Slater determinant wavefunction, it is a standard result that the one-body (or reduced)

density matrix is:

⇢(r, r0) =
NX

i=1

 i(r) 
⇤
i (r

0
) .

The electron density is obtained by taking the diagonal element of this density matrix:

n(r) = ⇢(r, r) =
NX

i=1

 i(r) 
⇤
i (r) =

NX

i=1

| i(r)|2 .
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Conclusion

Thus, for a set of indistinguishable independent particles (i.e., a system described by a Slater

determinant), the electron density is given by

n(r) =
X

occ i

�� i(r)
��2 .

This completes the proof.
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Legendre Transformation in Density Functional Theory

In thermodynamics and classical mechanics, a Legendre transformation is used to switch

from one set of independent variables to their conjugate variables. For example, one may

transform the internal energy U(S, V ) (a function of entropy S and volume V ) into the

Helmholtz free energy F (T, V ) (a function of temperature T and volume V ).

1. The Starting Point: Energy as a Functional of the External
Potential

In Density Functional Theory (DFT), the ground-state energy of an interacting many-

electron system is originally expressed as a functional of the external potential vext(r). That
is,

E[vext] = h [vext] | Ĥ[vext] |  [vext]i,

where the Hamiltonian is given by

Ĥ = T̂ + V̂ee +

NX

i=1

vext(ri).

In this formulation, the energy E depends on the entire function vext(r).

2. Conjugate Variables: External Potential and Electron Density

A central result in DFT is that the ground-state electron density n(r) is given by the func-

tional derivative of the energy with respect to the external potential:

n(r) =
�E[vext]

�vext(r)
.

This relation shows that n(r) and vext(r) are conjugate variables, much like entropy and

temperature are conjugate in thermodynamics.

Conjugate Variables and Functional Derivatives

A key insight in DFT is that the external potential vext(r) and the electron density n(r)
are conjugate variables. This means that the electron density is obtained by taking the

functional derivative of the energy with respect to vext(r):

n(r) =
�E[vext]

�vext(r)
.

In simple terms, this tells us that if we make a small change in the external potential at the

point r, the corresponding change in the energy is proportional to the electron density at

that point.
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Role of the Hellmann–Feynman Theorem

The Hellmann–Feynman theorem provides further justification. If the Hamiltonian Ĥ(�)

depends on a parameter �, then the theorem states that

dE

d�
=

*
 (�)

�����
@Ĥ(�)

@�

����� (�)
+
.

Here, if we think of a variation in the external potential at a point r as a change in a

parameter �, we have

�E[vext]

�vext(r)
=

*
 

�����
�Ĥ

�vext(r)

����� 
+
.

Since the external potential enters the Hamiltonian as

V̂ =

NX

i=1

vext(ri),

its functional derivative with respect to vext(r) is

�V̂

�vext(r)
=

NX

i=1

�(r� ri).

Taking the expectation value of this operator yields

�E[vext]

�vext(r)
= h |

NX

i=1

�(r� ri)| i,

which is precisely the definition of the electron density n(r).

3. Performing the Legendre Transformation

Because vext(r) and n(r) are conjugate, we can perform a Legendre transformation to change

the independent variable from vext(r) to n(r). This leads to the energy functional expressed

as a functional of the density:

EHK[n] = FHK[n] +

Z
dr vext(r)n(r) ,

where

FHK[n] = hT̂ i+ hV̂eei

is the universal functional—independent of the external potential—and represents the kinetic

and electron-electron interaction energies.
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4. Invertibility and One-to-One Correspondence

The Legendre transformation is only possible if the mapping from vext(r) to n(r) is invertible.
The Hohenberg–Kohn theorem guarantees that for a nondegenerate ground state, there is

a one-to-one correspondence (up to an additive constant) between the external potential

vext(r) and the ground-state density n(r). This invertibility means that once the density is

known, the external potential (and therefore the entire Hamiltonian) is determined, allowing

us to recast the ground-state energy purely as a functional of n(r).

5. Implications

The Legendre transformation in DFT has several important implications:

• Universality: The universal functional FHK[n] is the same for all electronic systems,

independent of the external potential.

• General Applicability: Although the ground-state energy originally depends on

vext(r), the Legendre transformation shows that the same formalism applies to any

external potential. That is, the energy can be defined as a functional of n(r) for a

range of potentials, not just one particular potential.

• Reduction in Complexity: Instead of dealing with a complex many-body wavefunc-

tion (or the external potential as a function over 3-dimensional space), we work with

the electron density n(r), which is also a function in three-dimensional space. This

dramatically simplifies the problem.
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What Does It Mean for a Potential to be Lo-
cal?

A potential is said to be local if it acts multiplicatively in the position (coor-
dinate) representation. This means that, when expressed in the coordinate
basis, the potential operator does not mix di↵erent positions; instead, it acts
directly by multiplication by a function of position.

For example, consider a one-particle potential v(r). In the coordinate
representation, its action on a wave function  (r) is given by:

[v̂ ](r) = v(r) (r).

Notice that the operator v̂ is diagonal in the coordinate basis.
In the context of many-body systems, if the potential energy operator for

N particles can be written as

V̂ =
NX

i=1

v(ri),

then each term v(ri) depends only on the position of the ith particle. When
this operator acts on a many-body wave function  (r1, . . . , rN), we have:

[V̂ ](r1, . . . , rN) =
NX

i=1

v(ri) (r1, . . . , rN).

This separability into a sum of one-particle potentials is what is meant by
the potential being local.

In contrast, a non-local potential does not act solely by multiplication at
a single point. Instead, it may involve an integral operator that couples the
wave function at di↵erent points. For instance, a non-local potential might
be written as:

[V̂  ](r) =

Z
dr0 V (r, r0) (r0),

where the value at r depends on  (r0) for other values of r0.
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Proof

We wish to prove that for a general many-particle wave function

 (r1, r2, . . . , rN )

and a local potential energy operator (which is multiplicative in the local representation)

V̂ =

NX

i=1

Vext(ri) ,

where Vext(r) is a function of position in 3D and N is the number of particles, the expectation

value of V̂ is given by

h |V̂ | i =
Z

d3r n(r)Vext(r) .

Here, n(r) is the one-particle density.

Proof:

1. Definition of the One-Particle Density

For a normalized many-particle wave function  (r1, . . . , rN ), the one-particle density is defined

as

n(r) = N

Z
d3r2 d

3r3 · · · d3rN
�� (r, r2, . . . , rN )

��2 .

2. Expression for the Expectation Value

The expectation value of the operator V̂ is

h |V̂ | i =
Z

d3r1 · · · d3rN  ⇤
(r1, . . . , rN )

 
NX

i=1

Vext(ri)

!
 (r1, . . . , rN ) .

3. Interchanging Sum and Integration

Since the sum over i is finite, we may interchange the sum and the integrals:

h |V̂ | i =
NX

i=1

Z
d3r1 · · · d3rN Vext(ri)

�� (r1, . . . , rN )
��2 .

For a fixed index i, denote

Ii =

Z
d3r1 · · · d3rN Vext(ri)

�� (r1, . . . , rN )
��2 .

4. Using the Symmetry of the Wave Function

Because  is (anti-)symmetric with respect to the interchange of particle coordinates, each term

Ii is identical. Without loss of generality, consider i = 1:

I1 =

Z
d3r1 Vext(r1)

Z
d3r2 · · · d3rN

�� (r1, r2, . . . , rN )
��2
�
.

By the definition of n(r), we have

Z
d3r2 · · · d3rN

�� (r1, . . . , rN )
��2 = 1

N
n(r1) .
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Thus,

I1 =
1

N

Z
d3r1 Vext(r1)n(r1) .

5. Summing Over All Particles

Since all Ii are equal,

h |V̂ | i =
NX

i=1

Ii = N · 1

N

Z
d3r Vext(r)n(r) =

Z
d3r Vext(r)n(r) .

Thus, we have shown that

h |V̂ | i =
Z

d3r n(r)Vext(r) .
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v-Representability in the Hohenberg–Kohn The-
orems

In Density Functional Theory (DFT), one of the central ideas is that the

ground-state properties of an interacting many-electron system can be uniquely

determined by its electron density n(r). The original Hohenberg–Kohn (HK)

theorems establish a one-to-one correspondence between the ground-state

density and the external potential vext(r) (up to an additive constant). How-

ever, a key assumption in their proofs is that the densities under consideration

are v-representable.

Definition of v-Representability

A density n(r) is said to be v-representable if there exists some local external

potential vext(r) for which n(r) is the ground-state density of the Hamiltonian

Ĥ = T̂ + V̂ee +

NX

i=1

vext(ri) .

That is, n(r) is v-representable if it can be obtained as the solution (i.e., the

ground-state density) of the Schrödinger equation for some local potential

vext(r).

Importance in the Hohenberg–Kohn Theorems

The v-representability condition is crucial in the original HK proofs for two

main reasons:

• One-to-One Mapping: The HK theorems rely on the assumption

that the density n(r) comes from some local potential. Under this

assumption, they prove that if two di↵erent external potentials yield

the same ground-state density, then the potentials can di↵er only by

an additive constant. This one-to-one correspondence between vext(r)
and n(r) is fundamental to formulating DFT.

• Variational Principle: The ground-state energy is expressed as a

functional of the density,

E[n] = F [n] +

Z
dr vext(r)n(r) ,
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and the proof that the minimum of E[n] equals the true ground-state

energy EGS relies on restricting the domain of n(r) to those densities

that are v-representable.

Limitations and Later Developments

Not every mathematically acceptable density (i.e., any nonnegative function

that integrates to the correct number of electrons) is v-representable. There

may exist densities that cannot be obtained as the ground-state density for

any local potential. Consequently, the original HK proofs apply only to the

subset of densities that are v-representable.

Later developments, such as the constrained search formulation by Levy

and Lieb, relax this restriction by considering the broader concept of N-
representability—requiring only that the density originates from some anti-

symmetric N -electron wavefunction, regardless of whether it is produced by

a local potential. This generalization makes the theory more practical and

applicable to a wider range of systems.
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